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ABSTRACT
Laser Thomson scattering (LTS) is a measurement technique that can determine electron velocity distribution functions in plasma systems.
However, accurately inferring quantities of interest from an LTS signal requires the selection of a plasma physics submodel, and compre-
hensive uncertainty quantification (UQ) is needed to interpret the results. Automated model selection, parameter estimation, and UQ are
particularly challenging for low-density, low-temperature, potentially non-Maxwellian plasmas like those created in space electric propulsion
devices. This paper applies Bayesian inference and model selection to a Raman-calibrated LTS diagnostic in the context of such plasmas.
Synthetic data are used to explore the performance of the method across signal-to-noise ratios and model fidelity regimes. Plasmas with
Maxwellian and non-Maxwellian velocity distributions are well characterized using priors that span a range of accuracy and specificity. The
model selection framework is shown to accurately detect the type of plasmas generating the electron velocity distribution submodel for
signal-to-noise ratios greater than around 5. In addition, the Bayesian framework validates the widespread use of 95% confidence intervals
from least-squares inversion as a conservative estimate of the uncertainty bounds. However, epistemic posterior correlations between the
variables diverge between least-squares and Bayesian estimates as the number of variable parameters increases. This divergence demonstrates
the need for Bayesian inference in cases where accurate correlations between electron parameters are necessary. Bayesian model selection is
then applied to experimental Thomson scattering data collected in a nanosecond pulsed plasma, generated with a discharge voltage of 5 and
10 kV at a neutral argon background pressure of 7 Torr-Ar. The Bayesian maximum a posteriori estimates of the electron temperature and
number density are 1.98 and 2.38 eV and 2.6 × 1018 and 2.72 × 1018 m−3, using the Maxwellian and Druyvesteyn submodels, respectively.
Furthermore, for this dataset, the model selection criterion indicates strong support for the Maxwellian distribution at 10 kV discharge volt-
age and no strong preference between Maxwellian and Druyvesteyn distributions at 5 kV. The logarithmic Bayes’ factors for these cases are
−35.76 and 1.07, respectively.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158749

I. INTRODUCTION

This paper presents a Bayesian framework for plasma model
selection and uncertainty quantification (UQ) in the context of
laser Thomson scattering (LTS) measurements in low-density,
low-temperature, potentially non-equilibrium plasma. While par-
ticularly motivated by plasmas in space electric propulsion (EP)
thrusters, the framework is equally applicable to other LTS plasma
measurement scenarios. Plasmas in EP thrusters are generated and

manipulated by electromagnetic fields to accelerate ions for thrust
and to confine electrons for efficient ionization. Electrostatic EP
devices, such as Hall effect thrusters (HETs), generate thrust by
accelerating ions in an electrostatic field. HETs specifically use elec-
trons confined in a radial magnetic field to ionize the neutral pro-
pellant, which is then accelerated in an axial electrostatic field. Many
aspects of HET performance are difficult to model, and minimally
invasive laser-based measurements of HET plasmas are needed to
baseline the plasma simulations used to design new thrusters. Recent
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laser-based studies of HETs indicate that the signal-to-noise ratio
(SNR) is a challenge1–3 that may necessitate robust signal inversion
methods.

Electron dynamics have a significant influence on plasma
behaviors due to the high mobility of electrons relative to ions.4 As
a result, electron properties can be used to infer plasma phenomena
in HETs. For instance, the electron temperature and density may be
used to inform anomalous electron mobility, magnetic confinement
and shielding, sheath size estimates at non-plasma boundaries, and
the onset and extent of ionization and acceleration zones. However,
accurate characterization of electron properties in HETs remains an
open problem due to challenges in both acquiring and interpreting
quality data.

Models that depend on electron motion are typically taken to be
a function of Maxwellian thermal plasma properties. This is because
making measurements of more general quantities like the electron
velocity distribution function (EVDF) in certain plasma environ-
ments of interest, such as the near-field plume of HETs, is challeng-
ing using electrostatic probes. The harsh environment oftentimes
destroys the probe or requires very short residence times. Further-
more, the probe affects the local plasma environment, bringing
estimates of the plasma’s (presumed) equilibrium state into ques-
tion. Several EVDF models exist with which to infer the summary
information like the equilibrium or effective electron temperature,
and the most accurate model is not known a priori.

Giono et al.5 used a cylindrical Langmuir probe to take far-field
measurements (at greater than ten thruster diameters) of electron
energy probability functions (EEPFs) in a mid-power, tradition-
ally unshielded SPT-100 HET.6 The authors concluded that the
distribution functions were best represented by a mixed-model
Maxwellian–Druyvesteyn EEPF, with the non-equilibrium EEPFs in
the plume being linked to the thruster mass flow rate. The results
in this paper indicated the dependencies of the plume EVDF on
the discharge channel EVDF and collision rate. The high-power
unshielded HET measurements with internal and external reverse-
orientation cathodes have indicated both (i) Druyvesteyn EVDFs in
the plume and (ii) the dependence of the EVDF on the cathode’s
orientation and placement.7 Furthermore, laser-induced fluores-
cence measurements in the near-field plume of the H9 magnetically
shielded HET show skewed and non-Gaussian ion velocity dis-
tribution functions, suggesting the presence of non-Maxwellian,
multi-distribution EVDFs.8 Given these HET plume EVDF results,
as well as the need to validate models for the predictive simulation of
electron properties in the near-field plume of magnetically shielded
HETs, robust EVDF model selection and electron property estimates
are needed.

LTS is an optical diagnostic that can characterize HET-relevant
plasmas. LTS yields 1D EVDFs, from which the electron temper-
ature, number density, bulk drift velocity, and other important
properties can be determined. However, estimates of these quanti-
ties of interest (QoI) are contingent on plasma physics submodels,
of which the applicability is not always known a priori for a given
plasma. In addition, the results are often very sensitive to noise.
For this reason, converting an LTS signal to physical QoI is par-
ticularly challenging in low-temperature, low-density plasmas, such
as those found in HETs. Model selection and comprehensive UQ
are thus needed to baseline plasma models using LTS data. Here,

we present and evaluate a Bayesian framework for LTS model selec-
tion and signal inversion with UQ, motivated by applications under
plasma conditions relevant to HETs. However, the framework is
applicable to signals collected from LTS in all plasmas, including
non-Maxwellian and low-density plasmas.

LTS measurements have been successfully carried out in
systems ranging from quiescent DC discharge plasmas to non-
equilibrium pulsed plasmas.9 More recently, LTS has been lever-
aged to study plasma parameters in the plume of standard and
magnetically shielded HETs.3 Several studies assessed uncertain-
ties in these measurements, most commonly using least-squares
sensitivities,10 with select examples of maximum likelihood estima-
tion11 and full Bayesian inference.12–15 It is noteworthy that these
LTS UQ frameworks were developed for fusion-based applications.
However, the detection schemes, equipment, and sources of uncer-
tainty vary between the LTS systems used in fusion research and
those used to measure EP devices. Fusion applications, necessi-
tated by the high temperature and density environment, use several
unintensified detectors and wavelength filters to capture intensity
data.14,15 Recently implemented LTS systems for low-temperature
and -density plasmas used a single intensified spectrograph to cap-
ture intensity data at multiple wavelengths simultaneously. In the
fusion case, the acquisition of a spectrum requires the aggregation
of intensity data from multiple detectors that can lead to wavelength
uncertainty. In the EP relevant case, spectrum data can be captured
directly with higher wavelength accuracy but oftentimes marred by
low SNRs.

The primary challenge when measuring an HET plasma with
LTS is the low SNR. HET plasmas typically exhibit a low number
density (ne from 1016 to 1020 m−3) and large temperature ranges
(Te from 0.1 to upward of 50 eV) compared to other plasmas, such as
arc discharge or fusion plasmas, whose number densities and tem-
peratures can be orders of magnitude higher. Low electron densities
in HET plasmas lead to less scattered radiation than in other sys-
tems, reducing the signal strength and thereby lowering the SNR.
Signal throughput limitations in a typical detection system for HET
applications also weaken the signal. Due to these factors, it is usually
necessary to acquire hundreds to thousands of individual spectra to
obtain a stable mean spectrum; processing workflows often assume
a statistically stationary target and neglect the effects of nonlineari-
ties in the measurement model. Several other sources of uncertainty
can affect the interpretation of LTS measurements. For example,
estimating ne via LTS requires calibration with a secondary scat-
tering technique, typically Rayleigh or rotational Raman scattering,
a.k.a. laser Raman scattering (LRS), which are themselves subject
to uncertainties that propagate through the parameter estimation
workflow.

Plasma parameters are estimated from LTS data by inverting
a forward measurement model that maps the (unknown) QoI to an
LTS signal. In the simplest case of one LTS plasma submodel and one
electron number density calibrating model, such as LRS, the para-
meter space of the highly nonlinear models is large, having anywhere
from 5 to 15 unknown parameters. There exist several equilibrium
and non-equilibrium candidate submodels that can have different
parameterizations and result in different computed QoI. The signal
analysis procedure is said to be well-posed when the signal and cho-
sen forward model correspond to a unique solution that is robust
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to noise, in which case a simple- or weighted-least-squares algo-
rithm may be used to calculate the QoI. However, if the forward map
is degenerate, meaning that multiple QoI yield the same or highly
similar signals, then the problem is ill-posed, and additional “prior”
information must be included to regularize the inversion. This sup-
plemental information is itself a source of uncertainty, which must
be accounted for in the inversion scheme to get an accurate estimate
of the parameter uncertainties.

Bayesian inference has been employed in several EP applica-
tions, such as the analysis of triple Langmuir probe data,16 tera-
hertz time-domain spectroscopy,17 and EP-based model inference
for electrospray thrusters.18 To address the aforementioned signal
inversion issues, this paper introduces a Bayesian framework for
parameter estimation, UQ, and model selection in LTS experiments
calibrated by Raman scattering. Synthetic data are used to quan-
tify the SNR regimes in which a distinction can be made between
candidate submodels for Maxwellian and non-Maxwellian EVDFs.
We show that the Laplace approximation to the posterior is appro-
priate at moderate SNRs, giving accurate estimates of the QoI in
LRS-calibrated LTS experiments. In addition, we show that for
moderate SNRs and above, the model selection framework can accu-
rately distinguish electron velocity distribution submodels. Finally,
we analyze experimental LTS measurements of a nanosecond-pulsed
plasma.

II. LASER RAMAN AND THOMSON
SCATTERING MODELS

Thomson scattering is the elastic scattering of incident radia-
tion from unbounded electrons, which is spectrally broadened and
shifted due to random and bulk motion of the electrons, respectively.
In effect, LTS provides a direct measurement of the EVDF and bulk
electron velocity. Furthermore, given a proper system calibration,
the amplitude of the LTS spectrum also indicates the electron num-
ber density. The electron number density is a critical state parameter
in HET applications, making the intensity calibration necessary.

LRS is the preferred technique for calibrating LTS because
Raman scattering is less susceptible to interference at the laser wave-
length, e.g., due to surface reflections, than alternatives such as
Rayleigh scattering.19 By contrast, Raman scattering is inelastic, so
interference from the laser can be mitigated with a filter.

Forward models for both Raman and Thomson scattering, indi-
cated by “R” and “T” superscripts in this paper, respectively, feature
a large number of parameters. Some of these parameters are deemed
QoI, or “quantities of interest,” denoted by the vector x, and others
are “nuisance parameters,” i.e., unknown variables that are not of
primary interest, denoted θ. Nuisance parameters, such as the col-
lection efficiency of an LTS system, must be considered since they
are not known a priori and are subject to uncertainties that affect
the estimates of the QoI. In other words, it is important to account
for uncertainties about θ when estimating x, conducting UQ, and
comparing system models.

The LRS intensity in units of counts per nm at wavelength λ,
produced by monochromatic incident light at wavelength λi and
intensity Ei, is

PR
λ (x

R, θR
) = η

λi

hc
ΔΩ L Ei ng(Tg, pg)∑

J

∂σR

∂Ω J′
SR

λ (λJ′ , τ), (1)

where η is the collection efficiency of the optical system, ΔΩ is the
solid angle of collection, L is the length of the probe volume, and
λi/hc is the conversion from incident energy to photon counts. The
variables J and J′ represent the population levels, as described in
Appendix A 1. L and ΔΩ are estimated using the beam waist image
size on the spectrometer slit plane, scaled by the detection system’s
magnification, and a thin lens optical analysis of the collection sys-
tem optics. In this way, ΔΩ is used as an optimization parameter
for the collection and detection systems, and η absorbs all forms of
system inefficiencies.

The LRS spectrum depends upon the neutral gas temperature,
Tg, and has an intensity proportional to the incident laser energy,
Ei, and gas number density, ng. These parameters, in turn, depend
on Tg and the pressure, pg. It is generally necessary to measure
pg, as we have done in the experiment outlined in Sec. V, whereas
Tg can be measured, inferred, or assumed to be a constant, e.g.,
room temperature, as is often done. In cases where Tg is a variable
of interest or unmeasured, as in our experiments, it can be inferred
from an LRS spectrum so long as pg is independently measured.20

In the case where neither is measured, the model can be classified
as non-identifiable, given that η and pg have the same effect on
the spectra. This non-identifiability can be mitigated through strong
prior information. In addition, it may be possible to get a unique
estimate for η even if pg and Tg are unknown using Bayesian infer-
ence methods and MCMC sampling. However, these methods would
be inefficient. The width of broadened Raman lines is in large part
dependent on the instrument broadening under standard calibra-
tion conditions, where other broadening mechanisms are negligible.
This is typically expressed in terms of the lines’ full width at half
maximum (FWHM). We impute a single FWHM to all the Raman
lines, denoted τ.

The differential Raman scattering cross section of the gas is
∂σR
/∂Ω, and SR

λ is the spectral distribution function. Note that all
parameters in the LRS model are summarized in Table I, and the
details of the Raman sub-functions are presented in Appendix A 1.
The Raman QoI and nuisance parameters are

xR
= [η, λi]

⊺ and θR
= [Tg, pg, τ]⊺. (2)

Given known laser, gas, and spectral parameters, the measure-
ment of PR

λ from neutral gases can be used to determine η and λi
for subsequent use in LTS measurements. Therefore, these QoI from
the Raman inference are nuisance parameters in the Thomson infer-
ence. Figure 1(a) depicts a Raman spectrum that was simulated using
the sample parameters listed in Table I.

The Thomson scattering signals are described by

PT
λ (x

T, θT
) = η

λi

hc
ΔΩ L Ei ne

∂σT

∂Ω
ST

k,λ(x
T, λi), (3)

where ∂σT
/∂Ω is the Thomson scattering cross section and η is the

system constant obtained from LRS calibration. Notably, ST
k,λ is a

general spectral distribution function for Thomson scattering, which
depends on the plasma submodel and is parameterized by a vec-
tor of model-specific variables, xT. We model the target plasma as
a superposition of Maxwellian and Druyvesteyn distributions, each
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TABLE I. Units and descriptions for the parameters used in the LRS models presented in Sec. II and Appendix A 1. The values in this table were used to generate the synthetic
spectrum presented in 1a.

Parameter Unit Value Description

pg Torr 10 Measured neutral gas pressure
Tg K 300 Neutral gas temperature inferred from the LRS spectrum
τ nm 0.153 LRS spectral linewidth FWHM, inferred from the LRS spectrum
η ⋅ ⋅ ⋅ 1 System efficiency constant, inferred from the LRS spectrum
λi nm 532 Incident laser wavelength, inferred from the LRS spectrum
Ei mJ 200 Measured incident laser energy per pulse
γ2
/ϵ2

o m6 0.505 × 10−60 Polarizability tensor anisotropy from Ref. 21
ζ rad 0 Raman polarization angle assumed to be parallel to the incident laser polarization
ΔΩ sr 0.05 Calculated system solid angle
L mm 2 Interrogation volume length, estimated from the beam waist image
θeiy rad 0 Incident polarization to y angle, parallel to our lab-frame y
θkio rad π/2 Incident to collection k angle, perpendicular to k and parallel to our lab-frame z
ρ ⋅ ⋅ ⋅ 3/4 Depolarization ratio from Ref. 21
Ig ⋅ ⋅ ⋅ 1 Nuclear spin quantum number from Ref. 21
Bg m−1 198.973 Rotational energy constant from Ref. 21
Dg m−1 5.7 × 10−4 Centrifugal distortion constant from Ref. 22
gJ=even ⋅ ⋅ ⋅ 6 Nuclear spin degeneracy from Ref. 21
gJ=odd ⋅ ⋅ ⋅ 3 Nuclear spin degeneracy from Ref. 21

specified in terms of a distinct electron number density, ne, and
temperature, Te,

ST
k,λ(x

T, θT
) =

1
ne
[

NM

∑
i=1

nM
e,i SM

k,λ(n
M
e,i, TM

e,i)

+

ND

∑
i=1

nD
e,i SD

k,λ(n
D
e,i, TD

e,i)]. (4)

In this expression, SM
k and SD

k are the Maxwellian and Druyvesteyn
distribution functions, outlined in Appendix A 3; NM and ND
denote the number of each distribution included in the mixture;
and ne is the total electron number density. All parameters of the
Thomson scattering model are summarized in Table II. There is
support for constructing distribution functions as weighted sums
of analytical distribution functions in the plasma literature at large,
with the most common being the bi-Maxwellian distribution; see
Appendix A 3.23–28

FIG. 1. Synthetic spectra generated with parameters from Tables I and II. (a) LRS spectrum and (b) LTS spectra for the submodels in Table III.
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TABLE II. Units and descriptions for the parameters used in the LTS models presented in Table II, Appendix A 2, and Appendix A 3. The values in this table were used to
generate the synthetic spectrum presented in 1b.

Parameter Unit Value Description

γMD 0.5 Maxwellian–Druyvesteyn distribution fraction
nM

e m−3 1 × 1017 Maxwellian number density
nD

e m−3 1 × 1017 Druyvesteyn number density
TM

e eV 5 Maxwellian electron temperature
TD

e eV 5 Druyvesteyn electron temperature
vd km s−1 0 Bulk drift velocity, inferred from the LTS spectrum
η 1 System efficiency constant, inferred from the LRS spectrum
λi nm 532 Incident laser wavelength, inferred from the LRS spectrum
Ei mJ 200 Measured incident laser energy per pulse
n 1 Refractive index
ΔΩ sr 0.05 Calculated system solid angle
L mm 2 Interrogation volume length, estimated from the beam waist image
θeiy rad 0 Incident polarization to y angle, parallel to our lab-frame y
θkio rad π/2 Incident to collection k angle, perpendicular to k and parallel to our lab-frame z
re m 2.8179 × 10−15 Classical electron radius from Ref. 10

The QoI and nuisance parameter vectors in the Thomson
model are

xT
= [TM; nM; TD; nD; vd]

⊺
and θT

= [η, λi]
⊺, (5)

with n and T being the electron number density and temperature
vectors, for instance,

n = [ne,1, ne,2, . . . , ne,NM]
⊺. (6)

The superscripts indicate whether a vector represents the
Maxwellian or Druyvesteyn distribution. Using this notation,
an equilibrium plasma corresponds to the model NM = 1, ND = 0,
and xT

= [Te, ne, vd]
⊺. In this work, we limit the superposition

to cases where both NM and ND are less than or equal to one.
For convenience, we define a distribution fraction for binary
Maxwellian–Druyvesteyn plasmas (NM = ND = 1),

γMD
=

nM
e

nM
e + nD

e
=

nM
e

ne
. (7)

Restricting our model to a low-order sum is consistent with a gen-
eralized distribution commonly found in the literature; see Refs.
24 and 26–28. There is also support in the literature for extend-
ing this to higher-order sums (see Appendix A 3). Understanding
the challenges and trade-offs in accurate model selection and signal
inversion for higher-order sums is a topic of future research.

Four plasma models are considered in this work, as spec-
ified in Table III. Note that model M3 features a binary
Maxwellian–Druyvesteyn plasma with a constant electron temper-
ature, i.e., Te = TM

e = TD
e , whereas M4 contains two distinct temper-

atures. For Thomson scattering, the QoI are given by Eq. (5), which
differs depending on the model, defined by NM, ND, vd, and the
vector of nuisance parameters from the Raman inference. The simu-
lated Thomson spectra based on M1–M4, using the parameters listed
in Table II, are shown in Fig. 1(b).

The LRS and LTS models presented in Eqs. (1) and (3) produce
an intensity at each wavelength, λ. A measured power spectrum can
be represented in vector form,

b = [Pλ1 , Pλ2 , . . . , PλNλ
]
⊺

, (8)

where Nλ is the number of spectral resolution elements. It is often-
times necessary to reject those parts of a spectrum that straddle the
laser wavelength. Therefore, when evaluating experimental data, ele-
ments of b within 4τ of the laser wavelength are eliminated from the
comparison. In what follows, we use both real data, synthetic data
and modeled data. The synthetic data are indicated with a tilde, e.g.,

b̃ = [P̃ λ1 , P̃ λ2 , . . . , P̃ λNλ
]
⊺

, (9)

and the modeled data are indicated with a hat, e.g.,

b̂(x) = [Pλ1(x), Pλ2(x), . . . , PλNλ
(x)]

⊺
. (10)

TABLE III. Description of the different plasma submodel QoI and nuisance parameter
vectors used for Bayesian model selection. M1 and M2 describe the single Maxwellian
and Druyvesteyn submodels. M3 and M4 describe the single and distinct temperature
sums of Maxwellian and Druyvesteyn submodels.

Model xT θT

M1 [TM
e , nM

e , vd]
⊺

[η, λi]
⊺

M2 [TD
e , nD

e , vd]
⊺

[η, λi]
⊺

M3 [Te, ne, γMD, vd]
⊺

[η, λi]
⊺

M4 [TM
e , TD

e , ne, γMD, vd]
⊺

[η, λi]
⊺
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III. BAYESIAN INFERENCE AND MODEL SELECTION
A. Background and Bayes’ equation

Bayesian inference is the process of updating a prior proba-
bility distribution given an observation.29,30 Often in optical exper-
iments, the measurement models are high-fidelity, dependent on
many parameters, and a single optical setup comprises multiple
diagnostics that provide partial information about the QoI. In the
context of parameter estimation and UQ, an uncertainty model
is developed based on prior information about the QoI and then
updated subject to the measurement data. The resultant “posterior”
information may be employed as prior information in subsequent
inferences and refined in light of new data. This approach can be
useful in a staged inference problem, where QoI from an earlier
inference are nuisance parameters in a subsequent inference; this
is the case for Bayesian inference applied to LRS-calibrated LTS
data. Bayesian inference has extensively been leveraged for UQ by
the fusion community.31 However, LTS for EP applications entails
unique considerations compared to fusion applications due to their
distinctive pre-processing requirements and model equations. For
instance, advances in detection, dispersion, and filtering technol-
ogy have enabled the use of a single intensified-spectrograph system,
which have sufficient spectral range and resolution to determine the
QoI.19 This section describes a Bayesian framework for evaluating
the LRS-calibrated LTS measurements of EP-relevant plasmas.

The QoI, measured signals, physical parameters, and models
are cast as random variables that are characterized by probability
distributions. These distributions describe one’s knowledge of the
parameters—narrow distributions indicate a high degree of confi-
dence, while wide distributions signify uncertainty. The posterior
distribution, P(x, θ∣b),32 conveys one’s knowledge of the QoI fol-
lowing a measurement. There are several distributions of interest in
our framework. The likelihood, which is the PDF that determines
how likely a given data b was produced by a set of QoI and nuisance
parameters. The prior PDF, or simply prior, P(x, θ), is the joint
PDF of the QoI and nuisance parameters based on any informa-
tion about these variables that is independent of the measurement.
Prior information may include physical limits, results from previ-
ous experiments, and so on. The posterior is the joint distribution of
the QoI and nuisance parameters, conditioned on the observed data
through the likelihood.

The posterior is a comprehensive Bayesian solution to an
inverse problem since it carries all the measured and prior infor-
mation about the QoI and nuisance parameters. The prior and
likelihood are constructed to include as much information about
the system and measurement scenario as is practical. The posterior,
P(x, θ∣b), likelihood, P(b∣x, θ), prior, P(x, θ), and evidence, P(b),
are related by Bayes’ equation,

P(x, θ∣b) = P(b∣x, θ)P(x, θ)
P(b)

. (11)

The evidence itself, a.k.a. the marginal likelihood, is the marginal
joint distribution,

P(b) =∬ P(b∣x, θ)P(x, θ)dθ dx. (12)

The posterior is summarized using point estimates, such as the max-
imum a posteriori (MAP) estimate of the QoI, xMAP. The MAP

point estimate is the estimate that maximizes the nuisance parameter
marginalized posterior,

P(x∣b) =∬ P(x, θ∣b)dθ. (13)

Point estimates are not sufficient for UQ, which requires at least
the spread of the posterior about the MAP to convey an estimate
of uncertainty.

B. Likelihood and prior PDFs
A measurement model that is a function of the QoI, b̂(x, θ), is

the basis for determining the QoI in any optical experiment. In this
case, the model corresponds to either the Raman or Thomson model
from Sec. II. These models are close approximations to the real phys-
ical process being observed, but discrepancies arise due to noise and
other imperfections in the system. The likelihood function quantifies
the chance that the data, b, could have been observed given a hypo-
thetical set of QoI and nuisance parameters, x and θ. This probability
corresponds to the distribution of errors,

e(x, θ, b) ≡ b − b̂(x, θ), (14)

where x and θ are ideal parameters for a set of data.
In this work, the data are a spectrum, assumed to have been

preprocessed (binned, etc.) ahead of being passed to the framework.
See Chap. 2 of Ref. 10 for a detailed explanation of pre-processing of
raw LTS and LRS signals. The starting point for inversion is a spec-
trum that is background- and reflection-corrected by subtracting the
plasma emission spectrum and the background reflection spectrum
from a raw LTS spectrum. Common sources of noise—such as ther-
mal noise in detection systems, read noise on the face of a solid-state
detector, and many others—can be approximated as Gaussian; see
Refs. 32 and 33 for details. Moreover, macroscopic representations
of measurement noise correspond to the macro-scale averaging of
many noise-creating processes and, as such, adhere to the central
limit theorem.32

Therefore, we choose to cast the likelihood function in this
work as a Gaussian likelihood, given by

P(b∣x, θ) = det (2πΓe)
−1/2 exp(−

1
2

e⊺Γ−1
e e), (15)

with Γe ∈ Rdb×db being the error covariance matrix. The size of
the data, db—in this case the number of points making up a
spectrum—is on the order of the number of pixels in a row on the
spectrograph detector (usually in the thousands). Assuming that the
errors are independent and identically distributed, with variance σ2

e ,
then Γe = σ2

e I and the likelihood simplifies to

P(b∣x, θ) = (2πσ2
e )
−db/2 exp(−

e⊺e
2σ2

e
). (16)

The prior PDF incorporates information about the QoI and
nuisance parameters that is independent of the data. Any prior
information that can be explicitly encoded in a probability dis-
tribution can be included. This information may include physical
bounds, dynamical relations, previous estimates of the QoI, etc. We

Rev. Sci. Instrum. 95, 043004 (2024); doi: 10.1063/5.0158749 95, 043004-6

Published under an exclusive license by AIP Publishing

 21 April 2024 21:38:53

https://pubs.aip.org/aip/rsi


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

assume that our prior information about the QoI is uncorrelated and
Gaussian, in which case

P(x) =
dx

∏
i=1

1
√

2πσ2
x,i

exp [−
(xi − μx,i)

2

2σx,i
], (17)

where

μx,i = min (xi) +
max (xi) −min (xi)

2
(18)

is the center of the physically plausible range of values for xi and

σx,i =
1
3
[max (xi) −min (xi)] (19)

ensures that 99.7% of the PDF occupies this range. The same pro-
cedure is used to define P(θ), and since the QoI and nuisance
parameters are independent, we set P(x, θ) to P(x)P(θ). The vari-
ables dx and dθ represent the length of the QoI and nuisance
parameter vectors, respectively.

C. Sampling from and approximating
the posterior PDF

The posterior PDF is a high-dimensional function that is not
generally available in closed form. We consider two methods for
accessing the posterior for UQ and model selection: sampling and
Laplace’s approximation. Given the dimension of the data, db, a log-
scale posterior density will be used for sampling to avoid issues with
arithmetic and machine rounding of small probabilities. Substitut-
ing Eqs. (17) and (16) into Eq. (11) and grouping terms yields the
negative-log posterior,

− ln [P(x, θ∣b)] = e⊺e
2σ2

e
+

dx

∑
i=1

(xi − μx,i)
2

2σ2
x,i

+

dθ

∑
i=1

(θi − μθ,i)
2

2σ2
θ,i

+ Z,

(20)
where Z is a constant that does not affect the topology of the
distribution.

Markov chain Monte Carlo (MCMC) refers to a class of meth-
ods that can be used to sample a posterior PDF. As the number
of samples becomes large, the density of samples becomes propor-
tional to the target distribution. There are several MCMC algo-
rithms available for sampling the posterior, including Gibbs, slice,
and Metropolis–Hastings sampling. The Metropolis–Hastings algo-
rithm generates steps with components along each dimension of
x and θ at once, as opposed to Gibbs and slice sampling, which
generate sequential samples along individual dimensions of the
distribution. To allow for flexibility in the model input vectors,
Metropolis–Hastings sampling was chosen. The Markov chain is
initiated at the least-squares estimate of the QoI to minimize the
“burn-in” time. For the LRS inference, in the case of the pressure,
which was measured, its mean and variance are set by the data. The
remaining prior widths are set by choosing physically sensical mini-
mum and maximum ranges for the parameters. Then, the posteriors
for the relevant parameters of the LRS inference are used to con-
struct the priors for those variables in the LRS inference. The rest of
the priors are constructed in the same way as above. MCMC chains
in this work are run until the cumulative mean trace and correlation
signals are determined to be approximately stationary.

It is often convenient to invoke an approximate form of the
posterior, which bears the name of Laplace: Assuming that the pos-
terior is smooth, strongly peaked, and unimodal, it may be modeled
using a Gaussian PDF that is centered at the global maximum and
fit to the local curvature at that point.32 The maximum is found by
an optimization algorithm, and the Jacobian at that point is squared
to approximate the Hessian and thereby estimate the inverse covari-
ance matrix. The utility and validity of this model of P(b∣x, θ) for
a sequential inference, such as LRS-calibrated LTS, is not known
a priori. In addition, the effect of the accuracy of prior informa-
tion on the ability to distinguish between candidate submodels is
also unclear at this stage. These questions are explored in Secs. IV
and V B.

D. Bayesian model selection
Up until now, our discussion of Bayesian inference has assumed

a fixed model of the target process and thus a constant set of QoI.
Many models are implicated in any estimation of the QoI, includ-
ing the measurement model, physics models (such as the submodels
in Sec. II), error distributions, priors, and hyperpriors, and we do
not always know the best models to use, a priori. Bayesian model
selection enables the comparison of models with incommensurate
QoI. In this paper, we are particularly interested in the application of
model selection to plasma submodels to deduce the presence of non-
equilibrium behaviors and ensure robust estimation of the unknown
parameters.

To start, it should be noted that any inference is implicitly
conditional on the model. We make this dependence explicit and
express an update using the ith model, Mi,

P(x, θ∣b, Mi) =
P(b∣x, θ, Mi)P(x, θ∣Mi)

P(b∣Mi)
. (21)

We can compute the so-called model-posterior PDF for Mi using
Bayes’ equation,

P(Mi∣b) =
P(b∣Mi)P(Mi)

P(b)
. (22)

The “model likelihood,” P(b∣Mi), indicates the degree to which a
model and one’s prior assumptions are consistent with the mea-
surement vector, b. Therefore, the ratio of model likelihoods for
candidate models Mi and Mj can be used to assess their relative
plausibility,

Bi,j ≡
P(Mi∣b)
P(Mj ∣b)

=
P(b∣Mi)P(Mi)

P(b∣Mj)P(Mj)
, (23)

where Bi,j is the so-called Bayes factor. Bayes factors greater than one
imply that the data in b are more consistent with model i than model
j, vice versa for Bi,j < 1; and one is indifferent to Mi and Mj when
Bi,j is equal to unity.

Assigning a prior distribution to a model requires comprehen-
sive knowledge of the model space, which is rarely available. Absent
specific information, we assume that all our submodels are equally
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plausible: P(Mi) ≈ P(M j) for all i and j. This assumption is used in
conjunction with Eq. (21) to calculate the Bayes factor,

Bi,j ≈
P(b∣Mi)

P(b∣Mj)
=
∬ P(b∣x, θ, Mi)P(x, θ, Mi) dx dθ
∬ P(b∣x, θ, Mj)P(x, θ, Mj) dx dθ

. (24)

Equation (24) may be approximated via the Monte Carlo method,

Bi,j ≈
Nj

Ni

∑
Ni
k=1 (2πσ2

e,i)
−db/2 exp(− e⊺i ei

2σ2
e,i
)

∑
N j

k=1 (2πσ2
e, j)
−db/2 exp(−

e⊺j ej

2σ2
e, j
)

. (25)

In this expression, N i and N j are the number of samples drawn from
P(x, θ∣Mi) and P(x, θ∣M j), respectively, which are used to evalu-
ate the numerator and denominator, in turn. The error variances,
σ2

e,i and σ2
e, j , may be model-specific, in principle, but we use a single

variance for all our plasma submodels.
We take the logarithm of Eq. (25) to provide numerical stability.

Our results are presented in terms of log(Bi,j) such that positive val-
ues indicate stronger support for model Mi than Mj, negative values
suggest the opposite, and zero indicates indifference.

The Monte Carlo estimation of the log-evidence is effective
when the prior PDF plays a large role in an inference. However,
when the prior is very diffuse compared to the likelihood, this tech-
nique leads to an excessive number of samples in low-density regions
of the model evidence, which poses a large computational cost. Effi-
cient estimation of the log-evidence is an active area of research; see
Refs. 34–36 for alternative methods to estimate this quantity.

IV. DISTINGUISHING VELOCITY DISTRIBUTION
FUNCTIONS WITH BAYESIAN MODEL SELECTION
A. Synthetic data, priors, and test matrix

As stated above, we put independent Gaussian distributions on
all our QoI and nuisance parameters. In the general case, a combi-
nation of priors, and specifically a log-uniform prior for the electron
number density, may be preferred, as was recommended in Ref. 17.
In addition, it is assumed that an LRS Bayesian inference or least-
squares inversion has been used to provide the mean and width of
the priors for η and λi, which are nuisance variables in the LTS inver-
sion. Table IV outlines the 3σx,i ranges for the prior PDFs. These
values were pulled, stretched, and rounded from a previous least-
squares signal inversion of collected LTS data, as representative of
an acceptable approximation to the posterior or “true” prior.

In order to explore the effects of SNR and prior uncertainty on
the “distinguishability” of candidate submodels, synthetic data are
generated at several SNRs and degrees of prior “misinformation.”
We define the SNR as the ratio of the generated data’s signal power
to the noise power,

SNR ≡
E[max (b̂)2

]

E[d−1
b (b̂ − b̃)

2
]

, (26)

where E(⋅) is the expectation operator. Using this formula, we gen-
erate synthetic data with a prescribed SNR by setting the variance
to

σ2
noise =

mean[max (b)2
]

SNR
. (27)

For ground truth values of x and θ, the simulated measurements are
given by

b̃ = b̂(x, θ) + esynth, (28)

where esynth is an independent and identically distributed random
variable with zero mean and variance σ2

noise.
We characterize the performance of Bayesian model selection

as a function of the accuracy and precision of the prior. To do
this, the prior PDFs can be widened and offset as a function of a
percentage of the original range and mean,

μshift
x,i = μx,i(1 +

κshift
i

100
) (29)

and

σstretch
x,i = μshift

x,i ±
range(xi)

2
(1 +

κstretch
i

100
), (30)

where κshift
i and κstretch

i ∈ [−100, 100]. These parameters allow for
independent stretching and shifting of the prior PDF within a ±3σx,i
range with respect to the original, data-generating prior’s ±3σx,i
range.

The cases presented in Secs. IV B–IV D were generated in the
following way. First, for a given combination of κshift

x,i and κstretch
x,i ,

baseline values of x and θ were drawn from P(x, θ) according to
Table IV. These were used to generate a synthetic signal, b̂(x, θ),
using M1 and M2 from Table III. Models M1 and M2 were cho-
sen for this comparison because they are parameterized with the
same parameter vector xT. Then, at each of the 1150 SNR values
between 1 and 100, the data were perturbed according to Eq. (28).
The value of ln (B2,1) was calculated at each SNR two times, each
using 500 samples from the perturbed prior. Similarly, to explore the
ability to detect deviations from the submodels, model M3 (a binary
Maxwellian–Druyvesteyn plasma) was used to generate the data at a
given value of γMD, according to the process outlined above. In these

TABLE IV. Description of the 3σx,i ranges for the submodel parameters used in the
synthetic LTS prior distributions.

Parameter Minimum Maximum

γMD 0.25 0.75
Te 2 3
TM

e 2 3
TD

e 1 2
ne 1 × 1018 5 × 1018

vd −50 50
η 0.160 0.190
λi 531.9 532.1
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FIG. 2. ln (B2,1) vs SNR over priors with increasing misinformation: (a) κstretch
x,i = 0, (b) κstretch

x,i = 100, and (c) κstretch
x,i = 300. Synthetic data generated from model M1 are

in blue, and synthetic data generated from model M2 are in purple. The dots indicate the calculated value of ln (Bi, j), and the lines indicate a line of best fit. ∣ ln (Bi, j)∣

substantially greater than zero indicates that the Bayesian framework is able to correctly identify the right model.

cases, 25 values of γMD between 0 and 1 were used, with 25 values of
SNR between 1 and 100.

B. Effects of prior uncertainty
To understand the effect of uncertainty in the prior (i.e., based

on its width) on one’s ability to distinguish candidate submod-
els, ln (B2,1) is calculated using priors at varying levels of width
misinformation, with κstretch

x,i ∈ {0, 100, 300} for all xi.
The results are presented in Fig. 2. We expect data generated

with M1 to produce ln (B2,1) < 0 and data generated with M2 to pro-
duce ln (B2,1) > 0. In addition, we expect the magnitude of ln (B2,1)

to decrease with decreasing SNR. At each SNR, a line of best fit was
computed by averaging the two values of ln (B2,1) at each SNR and
then fitting a line. This is shown in Fig. 2. In Figs. 2, 4, and 6, all
purple data points and the best fit line being positive and all blue
points and the best fit line being negative indicate that, in all cases,
the correct model was inferred.

In the base case (a), in which the generating distribution func-
tions are used as the priors (i.e., there is no prior misinformation),
the data demonstrate that the proposed method can distinguish

between candidate submodels over the entire range of SNRs from
1 to 100. Furthermore, there is strong support for the correct model
when the SNR ≥5. In cases (b) and (c), where there is prior misin-
formation in the form of a stretched PDF, the ability to distinguish
between the correct model is decreased compared to (a); case (c)
occasionally returns indistinguishable values of ln (B2,1), which were
automatically set to 0 in the data processing code.

Figure 3 explores the ability to detect deviations from each sub-
model using the binary model M3. Similar to the pure-Maxwellian
and pure-Druyvesteyn cases, support for the model drops with
decreasing SNR. However, the ability to distinguish between the
“degree of Maxwellianization” is maintained over the SNR range
considered. This indicates that the Bayesian model selection frame-
work is able to correctly distinguish between the candidate submod-
els and can distinguish between interpolated submodel candidates
accurately in accordance with the interpolation parameter γMD over
decreasingly informative priors. However, the slope of ln (B2,1) vs
γMD decreases in magnitude with increasing prior widths [cases (b)
and (c)], indicating that the models are harder to distinguish with
wider priors.

FIG. 3. ln (B2,1) vs γMD at varying SNR levels over decreasingly certain priors for model M3: (a) κstretch
x,i = 0, (b) κstretch

x,i = 100, and (c) κstretch
x,i = 300. The dots indicate the

calculated value of ln (Bi, j), and the lines indicate a line of best fit. γMD characterizes how “Maxwellian” the plasma is.
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FIG. 4. ln (B2,1) vs SNR for decreasingly accurate priors: (a) κshift
x,i = 1, (b) κshift

x,i = 20, and (c) κshift
x,i = 30. Synthetic data generated from model M1 are in blue, and synthetic

data generated from model M2 are in purple. The dots indicate the calculated value of ln (Bi, j), and the lines indicate a line of best fit. ∣ ln (Bi, j)∣ substantially greater than
zero indicates that the Bayesian framework is able to correctly identify the right model.

C. Effects of prior inaccuracy
We wish to understand the effect of the accuracy of the mean

of a prior PDF on the ability to distinguish candidate submodels as
a function of SNR. To do this, ln (B2,1) is calculated using priors at
varying levels of prior mean misinformation, with κshift

x,i ∈ {1, 20, 30}
for all xi except λi. The incident wavelength was fixed during this
test, as the signal inversion is extremely sensitive to the center wave-
length. In addition, any shift past a percentage of 30 on any of the
other variables led to uncomputable submodels, with the data pro-
cessing code returning ln (B2,1) = 0 overall SNR values. The results
are presented in Fig. 4.

As opposed to the uniform stretching of the prior informa-
tion, Fig. 4 indicates that shifting the prior mean by as little as
1% leads to a rapid drop in support for the correct model, which
is shown by the spread of the raw values of ln (B2,1). This is true
even at moderately high SNRs, above around 50, and gets progres-
sively worse at larger shifts in the prior means from the true prior.
Even small shifts in the prior mean with respect to the true value

lead to persistent effects on the residuals that skew ln (B2,1), lead-
ing to the stark contrast between Figs. 4 and 2. This sensitivity to
prior inaccuracy can be indicative of a very strong prior distribu-
tion compared to the information in the data. In such cases, it is
often desirable to collect higher SNR data and use wider prior dis-
tributions, especially when considering extensions to higher-order
mixtures of distribution functions.

Accurate discernment of the degree of Maxwellianization is evi-
dent at small prior information shifts from Fig. 5. However, again, at
large shifts from the true mean, the ability to discern the degree of
Maxwellianization (γMD) is lost, even at high SNRs.

The data above assume perfect information about the laser
intensity, λi. However, the same trends are also observed when the
mean of λi is subjected to shifts of κshift

λi
∈ {0.01, .5}, indicating the

sensitivity of the model selection on a very accurate estimate of the
center wavelength. This means that when the laser wavelength is
included as an unknown parameter, even sub-percentage errors in
the estimates of the center wavelength lead to the complete loss of
model distinguishability.

FIG. 5. ln (B2,1) vs γMD at varying SNR levels over decreasingly informative priors with model M3: (a) κshift
x,i = 1, (b) κshift

x,i = 20, and (c) κshift
x,i = 30. The dots indicate the

calculated value of ln (Bi, j), and the lines indicate a line of best fit. γMD characterizes how “Maxwellian” the plasma is.
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FIG. 6. ln (B2,1) vs SNR over decreasingly informative priors: (a) (κstretch
x,i , κshift

x,i ) = (10, 2), (b) (κstretch
x,i , κshift

x,i ) = (25, 5), and (c) (κstretch
x,i , κshift

x,i ) = (100, 20). Synthetic
data generated from model M1 are in blue, and synthetic data generated from model M2 are in purple. The dots indicate the calculated value of ln (Bi, j), and the lines
indicate a line of best fit. ∣ ln (Bi, j)∣ substantially greater than zero indicates that the Bayesian framework is able to correctly identify the right model.

D. Interactions of inaccuracy and uncertainty
To understand the effect of simultaneously inaccurate and

uncertain prior PDFs on the ability to distinguish between candidate
submodels, ln (B2,1) is calculated using priors at varying levels of
prior mean and width misinformation, with κstretch

x,i ∈ {10, 25, 100}
and κshift

x,i ∈ {2, 5, 20} for all xi except for λi. λi was fixed during this
test for the reason presented above. The results are shown in Fig. 6.

Overall, the ability to accurately distinguish between candidate
submodels is preserved over SNRs greater than 5, getting worse as
the priors diverge from the true priors. However, there is an artifi-
cially inflated and artificially deflated support for the Maxwellian and
Druyvesteyn models, respectively, as the priors diverge from the true
priors, indicating that poorer initial construction of the informa-
tion in the priors results in an incorrect preference for a Maxwellian
submodel. These trends are mirrored in Fig. 7, indicating that the
ability to discern small deviations from Maxwellian or Druyvesteyn
submodels is lost even at values of γMD = 0, with an inflated pref-
erence for the Maxwellian submodel. In short, even for small devia-
tions from a Druyvesteyn submodel, incorrect priors may artificially

prefer a Maxwellian submodel, even if they are wide enough to
include the true mean.

The cases presented in Secs. IV C, IV B, and IV D indicate
the necessity of well-constructed priors. However, the uncertainty
bounds and correlations provided by a least-squares inference need
to be validated by comparing the posterior generated using the
Laplace approximation to the posterior PDF using MCMC sam-
pling. This is explored in Sec. V B. In addition, the artificial prefer-
ence of a Maxwellian submodel, even when the candidate submodels
being compared are parameterized with the same x, brings into
question how the fidelity of the model, or models with increased
parameter spaces, affects the selection of the model. This question
is explored in Sec. IV E.

E. Transdimensional model selection
To understand the effect of model fidelity on the ability to dis-

tinguish between candidate submodels as a function of SNR, data
are generated using models M1, M2, M3, and M4 according to the

FIG. 7. ln (B2,1) vs γMD at varying SNR levels over decreasingly informative priors: (a) (κstretch
x,i , κshift

x,i ) = (10, 2), (b) (κstretch
x,i , κshift

x,i ) = (25, 5), and (c) (κstretch
x,i , κshift

x,i )

= (100, 20). The dots indicate the calculated value of ln (Bi, j), and the lines indicate a line of best fit. γMD characterizes how “Maxwellian” the plasma is.
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parameters in Table IV. Then, two values of ln (B2,1), ln (B3,1), and
ln (B4,1) are calculated using 1000 samples drawn from the actual
data generating priors (true priors) at 1000 SNRs between 1 and 100.

The results are shown in Fig. 8. In case (a), with data generated
via M1, the ln (Bi, j) indicate that, in the case where the true data
are Maxwellian, regardless of which model is being compared to the
Maxwellian model, the model selection framework is able to discern
the correct model.

In case (b), with data generated with M2, ln (B2,1) > ln (B3,1)

> ln (B4,1), with the spread of ln (B2,1) and ln (B3,1) both being less
than ln (B4,1). This indicates that the model selection framework
was able to correctly distinguish between the models. This is due
to the fact that ln (B3,1) was a single temperature, multi-model dis-
tribution. The values of γMD near zero would effectively create the
same distribution as model M2, leading to a higher preference than
model M4 because the temperatures were not allowed to overlap in
the data-generating priors.

In case (c), with data generated with M3, ln (B3,1) > ln (B2,1)

> ln (B4,1) also indicates the ability to correctly determine the model,
as well as the preference for M1 over the higher parameter space
M4. This is likely due to the non-overlapping temperatures for M4,
making it impossible to generate an equivalent single temperature
distribution.

Finally, in case (d), with data generated with M4, ln (B4,1)

> ln (B3,1) > ln (B2,1). Again, the ability to discern the correct model
is clear. The order of preference is also expected. That is, because
M1 and M2 are single temperature and density fraction models, they
are not able to properly fit the intermediate shapes created by the
superposition of EVDFs with multiple temperatures and number
density fractions.

Cases (a)–(d) indicate that the assumption of equally probable
priors on the models, P(Mi) ≈ P(M j), used in deriving Eq. (25) is
valid over the fidelity of the models evaluated, as compared to the
Maxwellian submodel. In addition, increasing model fidelity does
result in a preference for the correct submodel that best describes
the data, validating the model selection framework.

V. APPLICATION OF BAYESIAN LTS
TO NS-PULSED PLASMAS

We now demonstrate the Bayesian LTS model selection and
signal inversion process using experimental data. An LRS-calibrated
LTS system was developed for an optically accessible, stainless-
steel, pressure-controlled vacuum cell that was designed to generate
pulsed and steady-state DC discharge plasmas. However, at high
steady-state bias voltages, arcing events prevent the collection of
spectra due to plasma instability; the ns-pulsed plasma was chosen
for study here.

A. Experimental setup
The plasma was generated by kV-level biases between a set

of stainless steel electrodes with 24 mm diameter, 26.53 mm spac-
ing. The electrodes were floating with respect to the stainless steel
body of the vacuum cell, which was tied to the electrical ground.
Power feedthroughs isolated the discharge electrodes from the vac-
uum test cell, ensuring that their base configuration was floating with

FIG. 8. ln (Bi, j) vs SNR over several data generation cases: (a) data generated
with M1, (b) data generated with M2, (c) data generated with M3, and (d) data
generated with M4. ln (B2,1) (blue), ln (B3,1) (orange), ln (B4,1) (red). The dots
indicate the calculated value of ln (Bi, j), and the lines indicate a line of best fit.
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FIG. 9. (a) A nanosecond pulsed discharge setup and a sample discharge image. The interrogation laser beam propagates in the x direction and is polarized in the y direction,
and the scattering is collected in the z direction. (b) A diagram of the collection system optical setup. M, l, HWP, and BNF are acronyms for mirrors, lenses, half waveplates,
and Bragg notch filters, respectively.

respect to the vacuum cell and, therefore, with respect to the elec-
trical ground. The voltage pulse width was 200 ns, with a 100 Hz
frequency. A sample discharge image and a setup schematic are
shown in Fig. 9(a).

Thomson and Raman scattering were stimulated by the second
harmonic output of a pulsed Nd:YAG laser (Quantel Q-smart 850,
200 mJ/pulse). The interrogation was steered, shaped, polarization-
aligned, and focused into the test section using a series of mirrors,
lenses, half waveplates, and polarizing beam splitter cubes and then
transmitted to the plasma through Brewster windows on the vacuum
cell. The scattered light was collected, relayed, and imaged onto the
spectrometer using achromatic optics. A diagram of the detection
system optical setup is presented in Fig. 9(b). The system detection
solid angle, ΔΩ, was optimized by maximizing the collection angle
of the first collection lens while using the two volume Bragg-grating
notch filters (BNFs) as marginal- and chief-ray-limiting apertures.
Two BNFs (OptiGrate BNF-532-OD4) were used to filter the center-
line laser Rayleigh scattering and reflections to maximize the useable
length along the interrogation beam waist; see Ref. 19 for details. LRS
and LTS signals were detected using an intensified camera (Prince-
ton Instruments PM4-1024i-HB-FG-18-P46, 15-ns gate, 3000 shots)
coupled to a spectrometer (Princeton Instruments Isoplane 320A,
2400 l/mm grating). A delay generator (Berkeley Nucleonics BNC-
577) controlled the relative timing of the detector gate delay with
respect to the laser Q-switch to maximize the signal collected on the
detector. The delay generator also controlled the relative timing of
the laser and ns-pulsed power supply trigger, thus allowing for mea-
surements at different times in the pulsed plasma cycle. Descriptions
of previous iterations of the plasma and LTS facilities at Georgia
Tech and Texas A&M University can be found in Bak et al.19 A dia-
gram of the detection system optical setup is presented in Fig. 9.
Please see Ref. 37 for a detailed description of the LTS and plasma
cell used in this work.

LRS was collected at N2 neutral background pressures of
10, 7, and 4 Torr. Then, a background spectrum, Br, was taken at

the 0.8 Torr base pressure of the system. The subtraction of these
two signals left the pure Raman spectrum to be analyzed. For the
LTS measurements, plasma was generated at 7 Torr Ar neutral back-
ground pressure with two discharge voltages, 5 and 10 kV. Under
each LTS condition, measurements were obtained with the plasma
on, laser on; plasma off, laser off; and plasma off, laser on. These
signals were appropriately subtracted, following Ref. 10, to yield the
LTS spectrum to be analyzed.

B. Bayesian inference and model selection
In order to compare the Laplace approximation described in

Sec. III C to that of a full MCMC-sampled Bayesian inference, the
nonlinear least-squares method was used to determine the relevant
QoI and their variance. The parameter vectors used were

xR
LS = [Tg, τ, η, λi] (31)

and

xT
LS = [Te, ne, vd] (32)

for the least-squares optimization. Variables that have the same
effect on the inference of interest—such as pg and η on the Raman
inference, or η and ne, or vd and λi on the Thomson inference—are
not easily decoupled, and their uncertainty is not included using the
standard least-squares residual methods. At each target Raman pres-
sure, the expected value and the variance of pg were estimated using
the mean and square of the standard deviation of the pressure trace.
Then, a scaled and shifted Gaussian was fit to the Br signal to provide
initial estimates of τ and λi. The initial estimate of the gas tempera-
ture, Tg, was chosen to be 295.15 K. The temperature bounds were
chosen to be ±10%, and the other variables in the LRS LS vector were
allowed to range ±100%.
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The least-squares method was used to determine xR
LS and its

variance, δxR
LS, in accordance with a 95% confidence interval pro-

cedure,38 after approximating the least-squares covariance matrix.
The least-squares covariance matrix, ΓLS, is approximated using the
Jacobian, J, from the least-squares algorithm in the Python package,

ΓLS ≈
(J⊺J)−1 diag (e)2

Nλ − length(xLS)
, (33)

where A2
= AA. The same method is used to quantify the uncer-

tainty in the LTS case. Two fitted spectra are presented in
Fig. 10.

In order to calculate xT
LS, λi and η are assumed to be constant

at their optimal value for reasons stated previously, and their uncer-
tainty is not propagated forward. This leads to a possible solution for

FIG. 10. Raman least-squares fit at two background pressures: (a) pg = 10 Torr and
(b) pg = 7 Torr. The data and rejected data are presented in black solid and black
dashed lines, respectively. The estimated center wavelength is presented with a
purple dashed line, and the rejected data region is presented with red dashed
lines.

each individually collected Raman spectrum, although in the ideal
case, they should all produce the same value of λi and η. There can
be a small to possibly large variation in these parameters, specifi-
cally η, which can produce very different results in the inversion of
the Thomson signal for ne and vd. Ignoring the uncertainty in η and
comparing it to Bayesian inference will provide insights into when
it is necessary to propagate the uncertainty in η forward and when
it is appropriate to simply use the uncertainty from the least-squares
residuals.

The value of the relevant LS-LRS inference parameters η and λi,
where each xR

LS is evaluated, is shown in Fig. 11. The source of the
10% variation in the mean values of η in Fig. 11 can be attributed
to several factors. The vacuum cell pump down compression is
expected to be of μm order. The laser itself has an energy stability of
4% and pointing stability of at most μrad, of which the combination
could possibly lead to micro-movements of the beam height and lat-
eral location in the test section compounding into the observed 10%
variation in η.

Generally, uncertainty in λi is due to relative misalignment of
the image of the laser beam on the detector relative to the calibrated

FIG. 11. Least-squares inferred parameters vs pg: (a) η and (b) λi.
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center wavelength pixel on the detector. This is why λi is included as
a QoI. When the system has tight alignment, random fluctuations in
the calculated values between Raman signals are expected, but like
in our case, the fluctuations will be much less than 1%. In addition,
micro-movements of the beam perpendicular to the spectrometer
slit would introduce small changes in the calculated λi from the LRS
inversion. This can be eliminated by assuming that λi is 532 nm. That
assumption may allow for better relative bulk velocity measurements
but will likely result in less accurate FWHM, neutral gas tempera-
ture, and calibration constant measurements when misalignment is
prevalent.

At each value of η and λi from the LS-LRS, the bounds used
for the LS-LTS inversion were Teo = 10 eV, neo = 1 × 1020 m−3, and

FIG. 12. Thomson least-squares fit at two discharge voltages: (a) VD = 5 kV and
(b) VD = 10 kV. The data and rejected data are presented in black solid and black
dashed lines, respectively. The estimated center wavelength is presented with a
purple dashed line, and the rejected data region is presented with red dashed
lines. The SNR estimates using the Maxwellian and Druyvesteyn submodels are 4
and 5 in (a) and 15 and 14 in (b), respectively.

FIG. 13. Individual elements of the Thomson QoI xT
LS vs VD. The Maxwellian

submodel is presented in blue, and the Druyvesteyn submodel is presented in
orange.

vd = 0 km s−1, all bounded by ±100%. The collected Thomson spec-
tra are presented in Fig. 12. The QoI calculated from each of the
7 Torr Raman conditions is presented in Fig. 13.

The uncertainty in the calculated LRS parameters that are nui-
sance parameters in the LS-LTS inference at a given pressure has no
effect on the electron parameters because there was no way of incor-
porating that information using the LS residual method directly
without additional uncertainty propagation. However, the predicted
electron number density shows a large dependence on the predicted
optical efficiency constant η across pressures under each given LS-
LRS condition. In addition, the predicted value and uncertainty are
highly dependent on the model chosen to invert the signal of inter-
est. This is likely due to the inability of the LS residual method to
robustly include information such as the LRS uncertainty profile into
the LTS analysis. This further motivates our more robust Bayesian
method for including the relevant uncertainty profile from the LRS
inference into that Thomson signal inversion.

Hence, the Bayesian inference framework was implemented for
the LTS submodels M1 and M2. The general methodology follows
that outlined in Sec. III. The Bayesian inference model parameter
vectors are taken as the same vectors presented in Sec. II. The priors
are described in Table V, and the results are presented below. These
ranges set the 3σx,i values for the Gaussian prior PDFs described in
Eqs. (17)–(19).

A one million-element long Markov chain was constructed
using a custom Metropolis–Hastings algorithm implemented in

TABLE V. Description of the 3σx,i ranges for the LRS case at 7 Torr.

Parameter Minimum Maximum

pg 0.99 ∗ pgo
1.01 ∗ pgo

Tg 250 350
τ 0 0.5
η 0 1
λi 531 533
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Python. This system was used to sample the log posterior for the
7 Torr Raman scattering spectrum. The chain was started at the LS-
MAP estimate to reduce the burn-in time. The marginal and joint
posterior distribution functions are presented in Fig. 14.

The prior was sampled as a set of independent Gaussian distri-
butions, as shown in Fig. 14 in orange. The least-squares posterior
was constructed as follows: given that the pressure, pg, was not
included in the least-squares inference, the prior was sampled. For
the rest of the variables included in xR

LS, the least-squares MAP
estimate and the covariance matrix were used to sample from a mul-
tivariate Gaussian distribution; this is shown in Fig. 14 in red. The
Markov chain samples are shown in steel blue.

Across all cases except for the neutral gas pressure, the width
of the priors is larger than that of the posterior estimates. In addi-
tion, the priors used for Bayesian inference covered a wider range
than those for the least-squares case. However, least-squares pos-
terior estimates for the LRS case are consistent with the Bayesian
inference estimate. The case presented here covers the most con-
servative estimate of the priors, i.e., the case where the priors were
the widest. This shows that even for generally uninformed priors,
the least-squares provides a comparable uncertainty and parameter
correlations.

Similarly, in the Thomson case, for both models M1 and M2,
a one million element length Markov chain was sampled. The pri-
ors for the nuisance parameters of the LS inference were set from

the posterior of the LRS inference. The priors for the LS QoI are
described in Table VI, and the results are presented below.

Figure 15 shows the marginal and joint posterior PDFs for
both the Druyvesteyn and Maxwellian models, with the Maxwellian
model in blue and the Druyvesteyn model in orange, their LS pos-
terior estimates in purple and red, and their prior estimates in
green. Again, the MAP estimates and uncertainty bounds seem to
be in agreement, showing the utility and necessity as shown in
Sec. IV for accurate prior information. The joint posteriors show a
divergence in the correlations between variables. This is due to the
addition of the nuisance parameter uncertainties in the probability
model that were not available with simple least-squares inversion.
This indicates that the propagation of uncertainty, even for staged

TABLE VI. Description of the 3σx,i ranges for the LTS case at 7 Torr neutral
background pressure 10 kV.

Parameter Minimum Maximum

TM
e 0 100

TD
e 0 100

ne 1 × 1016 5 × 1020

vd −1000 1000

FIG. 14. LRS marginal and joint posterior distribution functions for all LRS model inputs along with the prior and least-squares posterior estimates. (a) Samples from the prior
are in orange, and the Bayesian and LS posteriors are in steel blue and red, respectively. (b) The same without the prior. For the sake of clarity, each joint posterior displays
a single Mahalanobis contour containing the most probable 11.8% of the distribution.
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FIG. 15. LTS marginal and joint posterior distribution functions for all LTS model inputs along with the prior and least-squares posterior estimates. (a) Samples from the
prior are in green, the Bayesian posteriors for the Maxwellian and Druyvesteyn submodels are in blue and orange, respectively, as well as the posterior estimates of the LS
inference are in purple and red, respectively. (b) The same without the prior. For the sake of clarity, each joint posterior displays a single Mahalanobis contour containing the
most probable 11.8% of the distribution.

inferences like the one presented here, in which there is an LRS
inference informing the nuisance parameters of the LTS infer-
ence, is very sensitive to the nuisance parameters of each previous
inference.

As the width of the nuisance parameter priors increases, the
more divergence between the MAP estimate and the most probable
value from the Bayesian inference was observed. When the width of
the prior for η in the LS inference was artificially increased by more
than 15%, the width of the posterior of the electron number den-
sity was observed to extend past 10% compared to the base case.
This indicates that for low SNR LRS measurements, or cases like
the one presented here where relatively high uncertainties between
the estimates of η are present, the LS estimated error bars are not
representative of the true uncertainty and that propagation of the
uncertainty on η or Bayesian inference is required.

The consistency in predicting a lowermost probable electron
number density and electron temperature in the Druyvesteyn cases
with similar uncertainty profiles and with all other most probable
QoI having almost identical predictions indicates the importance of
selecting the best model. Selecting the best model based on the avail-
able information and fidelity of the inferences is important as the
predicted electron temperatures and densities can vary up to 10%
and 15%, respectively.

The ln (B2,1) were calculated using 250 000 samples and were
∼0 in both cases. This is due to the fact that, as stated in Sec. V A,
inaccurate priors lead to indistinguishability of the models. The

values of ln (B2,1) using 250 000 samples and drawing from a uni-
form prior that was constructed using the minimum and maximum
values across both Maxwellian and Druyvesteyn posteriors were
calculated to be −1.07 and −35.76 for the 5 and 10 kV cases, respec-
tively. This is consistent with the SNR ratio difference evident in the
spectra presented in Fig. 12. This indicates good support and is dis-
tinguishable between models in the high SNR case (10 kV), in which
the supported model can be taken as ground truth. In the low SNR
case, it may be necessary to deploy several other candidate submod-
els, or bring in additional prior information from other experiments
in order to justify the unequal a priori probability of the submod-
els, P(Mi) ≠ P(M j), providing additional support of one candidate
submodel over the other.

VI. CONCLUSIONS AND OUTLOOK
This paper demonstrates a novel framework for Bayesian model

selection in Raman-calibrated laser Thomson scattering. We explore
the effects of the accuracy and uncertainty of prior information, the
signal SNR, and the model fidelity on model selection in LTS exper-
iments. To do this, we implement a generalized LTS model that, in
the limits of γMD ∈ [0, 1] and a single electron temperature, collapses
into a Maxwellian–Druyvesteyn EVDF-based spectrum. The frame-
work can be used to determine that, below SNRs of 5, ln (Bi, j) cannot
discriminate between candidate submodels, regardless of γMD, the
model fidelity, or the accuracy of prior information. In terms of
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model fidelity, as the fidelity of the model increases, or as more than
two models are employed, it is clear that a priori information on
the preference of one model over another is not necessary given the
ability of the model selection framework to correctly identify the
data generating model through the value of ln (Bi, j). However, when
expected, this a priori information should be factored in to avoid an
artificial preference for a Maxwellian EVDF submodel.

In addition, this paper implements a Bayesian inference frame-
work and compares it to posterior estimates from the Laplace
approximation, informed via the MAP and uncertainty profiles cal-
culated from the LS inference. The framework demonstrates that
at LTS signal SNRs above 10, the Laplace approximation is valid
for LRS-calibrated LTS experiments with a high LRS SNR. In cases
where the LRS SNR is low, the LTS inference would be further com-
promised by nuisance parameters from the LRS inference, and a full
Bayesian inference or some other form of uncertainty propagation
may be required. This validates the widespread use of LS inferences
for the determination of the MAP and uncertainty bounds on the
QoI, and in cases where the SNR is high, the lengthy implementa-
tion of such Bayesian methods is unnecessary. However, in the cases
where variable correlations are necessary, the addition of a single
nuisance variable has a small but noticeable effect on the predicted
correlations for the LTS QoI. Therefore, in cases where the variable
correlations are critical, for example, for closure validation in EP-
related LTS experiments, full Bayesian inferences may be required
depending on the signal SNR.

Within the context of LTS experiments in HET plasmas, specif-
ically for HET closure model validation, it may be important to
implement such a Bayesian framework for model selection and para-
meter inference. The framework presented here can be improved
for such an application in several ways. First, a Bayesian infer-
ence is implemented for models M3 and M4. This would allow
submodels Mi to be compared to Mj for all models i and j to deter-
mine the most optimal. The implementation of a plasma that can
be independently studied with electrostatic probes and LTS will
be of significant benefit for further development of the Bayesian
inference and model selection methods. The shortcomings due to
leveraging a low order sum of one Maxwellian and one Druyvesteyn
brings into question to what extent the sums of Maxwellian and
Druyvesteyn distributions can be increased. A future goal of the
implementation of this Bayesian framework is to understand the
trade-off between extending to higher order sums of Maxwellian
and Druyvesteyn distributions and the ability to detect such higher
order models as well as the ability to accurately fit all the model
parameters.
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APPENDIX: SCATTERING OF ELECTROMAGNETIC
RADIATION

Incident radiation can interact with matter, accelerating
charges within the matter, which leads to re-radiation. The efficiency
of scattering processes is characterized by a differential scattering
cross section that is contingent on the scatterer’s molecule structure.
Scattered power intensity is directional, and the distribution of scat-
tered radiation depends upon the reference frame and direction of
observation, all of which are wrapped into the differential scattering
cross section. Figure 16 depicts the scattering configuration with all
relevant angles and vector orientations that appear in the description
of our scattering model equations in Appendixes A 1–A 2.

We are interested in the time-averaged scattered power per
pulse/shot of incident radiation in photon counts, since our detec-
tors measure (and intensify) each photon that interacts with the
photocathode. For detailed derivations, see Refs. 39–44. The gen-
eral equation representing the spectrally distributed total scattering
signal in units of counts per nm is

Pλ = η
λi

hc
ΔΩ L Ei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

n
∂σ
∂Ω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

S(λ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

, (A1)

FIG. 16. General wave vector orientations in a scattering experiment.
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where η is the intensified photoelectron to scattered photon calibra-
tion constant (or the “system calibration constant,” Csys), λi/hc gives
the photons per joule at the incident wavelength, ΔΩ is the solid
angle of collection, L is the length of the probe volume, and Ei is
the incident laser energy. The braces denote (I) the leading constants
that are often grouped as Csys, (II) the total scattered power, and (III)
the total scattered power, which is redistributed spectrally due to
broadening mechanisms. Also in Eq. (A1), n is the scatterer number
density, ∂σ/∂Ω is the scattering cross section per unit solid angle,
and S is the spectral redistribution function. Due to diffraction and
the finite nature of the detection system, in particular the spectrome-
ter, the total scattered intensity at any one wavelength is not perfectly
captured at that theoretical wavelength. Rather, the aforementioned
effects act to redistribute the total scattered intensity around the tar-
get wavelength. This is mathematically represented as the spectral
distribution function, S(⋅). The spectral distribution function acts
to distribute the total scattered intensity over the domain of interest.
The spectral distribution acts as a PDF on the domain of interest and
must satisfy the following relationship:

∫

∞

0
S(λ) dλ = ∫

∞

0
S(ω) dω = ∫

∞

−∞
S(v) dv = 1. (A2)

In this expression, ω represents the frequency and v is the velocity. It
is paramount that when the scattering equations of interest are cast,
the relationship above is satisfied in the domain of interest. If not, the
order value and magnitude of the estimated electron number density
may be incorrect. Simple dimensional analyses of some of the equa-
tions presented in different sources indicate that a wavelength step,
δλ, is often included to reconcile the order of magnitude discrep-
ancies that come about from non-normalized spectral distribution
functions. The scattering cross section per unit solid angle contains
all the physics of the scattering of interest. We discuss the relevant
forms to this work, rotational Raman and Thomson scattering, as
follows.

1. Rotational Raman scattering
LRS is the inelastic scattering of incident radiation from

polyatomic molecules as the result of a net exchange of energy
from the incident radiation and the internal energy modes of
the molecule.39,40 Here, we are concerned with first-order, lin-
ear rotational (incoherent) Raman scattering in a neutral diatomic
background gas. Closed-form solutions for such LRS are admit-
ted because of the selection rules associated with this type of
molecule.45,46 For such a molecule, its rotational selection rules for
the possible transitions in the rotational quantum number J follow
J′ = J → J ± 2. A Stokes transition is one in which J → J + 2, and an
anti-Stokes transition is one in which J → J − 2. A transition from
J → J is a Rayleigh transition and is not considered here. It can be
shown21,39 that the rotational Raman scattering cross section is the
sum of the Stokes and anti-Stokes cross sections as

∂σR

∂Ω
=∑

J

∂σR

∂Ω Stokes
+∑

J

∂σR

∂Ω anti−Stokes
. (A3)

Unlike Thomson scattering, where the polarization of the scattered
light is parallel to the polarization of the incident radiation for
weakly magnetized plasma in which Faraday rotation is negligible;
each individual Raman scattered photon has a polarization that is

random with respect to the incident radiation. Over an ensemble
average, the average polarization is quantified through the angle
ζ, which is the angle between the polarization of the ensemble-
averaged Raman scatter and the incident radiation, as is the case
here.

The Stokes and anti-Stokes cross sections are governed by

∂σ
∂Ω J′

=
nJ

ng
{(1 − ρ)cos2

(ζ)[1 − cos2
(θkio)sin2

(θeiy)] + ρ}

×
∂σ
∂Ω

�

J′
, (A4)

with ρ, ζ, θkio, and θeiy being the depolarization ratio, the angle
between the polarization of the scattered Raman radiation and the
incident radiation, the angle between the incident radiation prop-
agation direction and the direction of scattering observation, and
the angle between the incident radiation polarization and the z axis,
in Fig. 16, respectively. Note that the θ for angles should not be
confused with the θ representing nuisance parameters in the main
sections.

The ratio of the Jth population level to the total number of
particles is quantified through the partition function as

nJ

ng
=

1
Qg

gJ(2J + 1) exp [−
ϵJ(J)
kBTg

]. (A5)

The perpendicular Raman cross section, (∂σ/∂Ω)�J′ , is

∂σ
∂Ω

�

J′
=

64π4

45
γ2

ϵ2
o

bJ′

λ4
J′

. (A6)

The anisotropy of the molecular polarizability tensor, γ2
/ϵ2

o, is lin-
early interpolated from experimental measurements at the frequency
of interest, as is typical in Refs. 10, 21, and 47.

The rotational energy mode, rotational partition function, ideal
gas law, Placzek–Teller coefficients, and Raman frequency shifts are

ϵJ(J) = hc[BgJ(J + 1) −DgJ2
(J + 1)2

], (A7)

Qg =
(2Ig + 1)2kB Tg

2Bghc
, (A8)

Pg = ng kB Tg, (A9)

bJ′(J) =
3
8
(2J + 1 ± 1)(2J + 1 ± 3)
(2J + 1)(2J + 1 ± 2)

, (A10)

and

λJ′(J) = λi ± λ2
i Bg(4J + 2 ± 4), (A11)

respectively. Table I contains the relevant parameter values.
In the case of rotational Raman scattering, we assume that the

only relevant source of spectral redistribution is the distribution of
the total scattered power due to the finite detection optics, spectrom-
eter, and detection system—commonly referred to as the instrument
function—because Doppler and pressure broadening are negligible.
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We assume that this (integral normalized) function can be modeled
by a Gaussian PDF as

SR
(λJ′ , λi, τ) =

1
√

2πσif
exp
⎡
⎢
⎢
⎢
⎢
⎣

−
1
2
(

λi − λJ′

σif
)

2⎤
⎥
⎥
⎥
⎥
⎦

. (A12)

As mentioned, this redistribution function must adhere to the con-
straint in Eq. (A2). Traditionally, instrument functions are described
with FWHMs, τ. We can relate this to the Gaussian σif via

σif =
τ

2
√

2 ln (2)
. (A13)

In the Raman case, given that we model this as the only source of
broadening, the redistribution operation becomes a simple convolu-
tion. However, given that each Raman transition produces a single
intensity at the particular Raman wavelength, we are mathematically
convolving a Gaussian with a Dirac delta function at each transi-
tion. As such, the convolution is simply the peak intensity of the
Raman line multiplied by the instrument function Gaussian cen-
tered at that Raman transition wavelength. Hence, we can explicitly
state the expected Raman signal in photon counts per incident laser
pulse as

PR
λ (x

R, θR
) = η

λi

hc
ΔΩ L Ei ng(Tg, pg)∑

J

∂σR

∂Ω J′
SR

λ (λJ′ , τ), (A14)

in units of counts per nm.

2. Incoherent Thomson scattering
LTS is the elastic electromagnetic scattering of incident radi-

ation from unbounded charged particles and can be coherent or
incoherent. Sections 2.2 and 2.4 in Refs. 10 and 47, respectively,
discuss the cases in which the experimental setup and plasma condi-
tions meet the conditions for coherent Thomson scattering. In this
work, we consider only incoherent LTS.

For LTS, the wavelengths of the scattered radiation are con-
sistent with the Doppler shifted motion of the individual electrons
along the scattering wave vector k; see Chaps. 1 and 4 of Ref. 43 and
Chap. 2 of Ref. 10 for details.

It can be shown that the electron Thomson scattering cross
section is

∂σT

∂Ω
= r2

e[1 − cos2
(θkio)sin2

(θeiy)], (A15)

with the classical electron radius being ∼2.8179 × 10−15 m. For LTS,
the redistribution of the total scattered power is dominated by two
wavelength shifts caused by the relative motion of each scattering
electron with respect to the observer of the scatter.43 This is directly
linked to the relative velocity of the observer and the scattering elec-
tron along the scattering wave vector, k ≡ ki − ks, with ki being the
incident propagation wave vector and ks being the wave vector along
the direction from the scattering volume to the observer. To avoid
confusion, the spectral distribution function is explicitly labeled with
k to indicate that it is along the direction of the scattering wave vec-
tor, in whatever unit vector basis is used to define these vectors. For
an ensemble of electrons, this spectral distribution shape function

is directly related to the EVDF along the scattering wave vector, fk.
This distribution happens over tens of nm, an order of magnitude
or greater than that of the instrument function broadening, justify-
ing why that contribution to the broadening is often neglected, as
is done here. Given this, the total scattered power is redistributed
over the electron velocity distribution function along the scattering
wave vector. The relationship between the spectral distribution func-
tion along the scattering wave vector and the velocity distribution
function is Sk(λ) = 1

k fvk(λ). For a plasma whose electron popula-
tion is in thermal equilibrium, Sk(λ) corresponds to a Maxwellian
electron velocity distribution function (EVDF) that can be related
to the equilibrium electron temperature Te. In the case of a non-
equilibrium plasma, there are several analytical models that can be
applied, including bi-Maxwellian and Druyvesteyn distributions. A
brief description of these candidate spectral distribution submodels
is presented below. Please note that the spectral distribution func-
tions here implicitly assume that the plasma is low-temperature and
neglect the relativistic terms that may be present in some fusion
applications.43

3. Maxwellian, Druyvesteyn, and generalized single
dimensional electron velocity distribution
function submodels

As stated above, electrons adopt a Maxwellian EVDF in the
thermal equilibrium case. This is a solution to the Boltzmann equa-
tion in which the net effect of any collisional process between
like and unlike molecules is zero, regardless of the collision mech-
anism.48 This is encountered in plasmas with high degrees of
ionization and collisionality.10 In this case, the classical electron tem-
perature is the full descriptor for the shape of the distribution. The
Druyvesteyn EVDF is a non-equilibrium distribution that describes
plasmas where the low degree of ionization and non-constant col-
lision frequency among the electrons lead to a distribution that has
a lower density in the high energy regime. In the Druyvesteyn case,
the effective electron temperature is defined from a mean energy cal-
culation determined from the moments of the EVDF distribution
function.

In the more general case, a cumulative energy distribution
function (CEDF) that interpolates between the Maxwellian and
Druyvesteyn distributions parameterized by d, TeV and a function
of the electron energy in eV24,26–28 is

F(EeV) = c1(d)T−3/2
eV

√
EeV exp{[−c2(d)(

EeV

TeV
)

d
]}, (A16)

with c1 and c2 being the functions of gamma functions of d.
This CEDF has extensively been used to assess the degree of

departure from a Maxwellian distribution in electrostatic probe data,
quantified through the parameter d. At d = 1, Eq. (A16) is the CEDF
of a Maxwellian, and at d = 2, it is one of a Druyvesteyn. The con-
version between this CEDF and the PDF required in order to cast
the spectral distribution function from the eV domain to the nm
domain, with the label G representing the generalized distribution,
is

SG
k (λ) =

∂EeV

∂λ
Sk(EeV(λ)), (A17)
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with

SG
k (EeV(λ)) =

1
k
[
∂

∂λs
F(EeV(λs) =

1
2

mev(λ)2
)], (A18)

with, as implicitly stated in the Sk equations above,

v =
1
k
(ωi(λi) − ω(λ) − kv2

d). (A19)

The somewhat arbitrary nature of the functional form of Eq. (A16)
(see Ref. 28) and ambiguity in the dimensionality of EeV make
solving Eqs. (A17) and (A18) ill-posed. Instead, there is good sup-
port in the literature building distributions as weighted sums of
other distribution functions, with the most recognizable being the
bi-Maxwellian distribution function.23–25 To this end, instead of
resolving Eqs. (A17) and (A18), a generalized function is defined as a
superposition of Maxwellian and Druyvesteyn spectral distribution
functions, with

PT
λ (x

T, θT
) = η

λi

hc
ΔΩ L Ei ne

∂σT

∂Ω
ST

k,λ(x
T, λi), (A20)

and the spectral distribution function as

ST
k,λ(x

T, θT
) =

1
ne
[

NM

∑
i=1

nM
e,i SM

k,λ(n
M
e,i, TM

e,i)

+

ND

∑
i=1

nD
e,i SD

k,λ(n
D
e,i, TD

e,i)]. (A21)

This function is parameterized by the following QoI and
nuisance parameter vectors:

xT
= [TM; nM; TD; nD, vd] (A22)

and

θT
= [η, λi]

⊺. (A23)

Here, n and T are the electron number density and temperature
vectors. The superscripts indicate a Maxwellian or Druyvesteyn dis-
tribution. Using this system, an equilibrium plasma corresponds
to the model NM = 1, ND = 0, and xT

= [Te, ne, vd]
⊺. For simplic-

ity, the superposition is limited to the cases where NM and ND
are both less than or equal to one. For convenience, we define a
distribution fraction for binary Maxwellian–Druyvesteyn plasmas
(NM = ND = 1):

γMD
=

nM
e

nM
e + nD

e
=

nM
e

ne
. (A24)

For the Maxwellian and Druyvesteyn distribution functions
described above, the spectral distribution functions parameterized
by frequency (see Ref. 10 for a full set of derivations) are given by

SM
k,ω =

1
√

2π
1

kσ
exp [−

1
2
(

ωi − ω − kvd

kσ
)

2

] (A25)

and

SD
k,ω = β

1
kσ

erfc[α(
ωi − ω − kvd

kσ
)

2

]. (A26)

The incident and scattered frequencies, the magnitude of the
scattering wave vector, and σ are represented by

ωi =
2πc
n

1
λi

and ω =
2πc
n

1
λ

, (A27)

ki =
2π
ωi

and k =
2π
ω

, (A28)

k ≡ ∣k∣ =
√

k2
i + k2

s − 2kiks cos (θkio) ≈ 2ki sin(
θkio

2
), (A29)

and

σ ≡
√

kBTe

me
. (A30)

Finally, as presented, the distributions were derived on the frequency
ω domain. To be proper PDFs on the wavelength domain (in nm), a
change of variables is required for a proper mathematical redistribu-
tion of the scattered power. This is paramount for accurate estimates
of the LTS electron number density. In this case, the analytical
expression is

∂ω
∂λ
=

2πc
n

1
λ2 (A31)

such that

Sk,λ(λ) =
∂ω
∂λ

Sk,ω[ω(λ)]. (A32)
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