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Abstract 

Noninvasive direct measurements of higher-order moments of the electron velocity distribution 
function (EVDF) are needed to improve the understanding of non-Maxwellian electron behavior in 
various plasmas. This work presents a Bayesian inference method with Monte Carlo sampling to infer the 
electron heat flux and excess kurtosis from ILTS spectra, which also improves the inferences of the lower-
order moments. The method assumes that the EVDFs are described by the sum of at most four super-
Gaussians and is tested against synthetic spectra that are representative of ITLS measurements in low-
temperature plasmas. 15 synthetic spectra are considered that include Maxwellian, Druyvesteyn, and 
Kappa distributions and their skewed counterparts. For all synthetic spectra considered, the true value of 
the heat flux is within the uncertainty bounds of the inference. Regarding the excess kurtosis, the true 
value of the excess kurtosis is within the uncertainty bounds of the inference for all cases except for the 
Kappa distributions with no or low skewness. At the signal-to-noise ratio of the synthetic spectra, the 
minimum detectable skewness and excess kurtosis are around ± 0.006 and ± 0.07, respectively. When the 
heat flux and excess kurtosis are significantly above their minimum detectable values, relative 
uncertainties range between 40% and 5%. Lastly, in terms of symmetric or low-skewness EVDFs, we find 
that ILTS is best suited for EVDFs with negative excess kurtosis, suggesting that ILTS can accurately and 
precisely measure nonequilibrium electron properties in many low-temperature plasmas. 

 

1. Introduction 

In low-temperature plasmas, electrons can 
often be in non-equilibrium [1]. Such non-
equilibrium can produce significant deviations 
from Maxwellian electron velocity distribution 
functions (EVDFs). Non-Maxwellian EVDFs can 
result in reaction rates [1-3] and fluxes through 
sheaths [4, 5] that differ significantly from those 
calculated assuming Maxwellian EVDFs and in 
non-conductive electron heat fluxes [6-8]. These 
non-Maxwellian effects can significantly 
influence plasma composition and spatial 
distributions of electron temperature [9]. While 
various simulation methods can capture non-
Maxwellian electron effects [2-4, 7, 8, 10, 11], 
experimental methods are needed to validate 
these simulations and to improve the 

understanding of non-Maxwellian electron 
behavior in different plasmas. 

Langmuir probes are the most common 
technique used to measure non-Maxwellian 
electron energy distribution functions (EEDFs) 
[12-14], and optical emission spectroscopy 
(OES) has also been used to measure EEDFs [15-
18]. Langmuir probes are able to measure the 
EEDF from low to high electron energies (0-50 
eV) [1] and strategies exist to mitigate probe 
perturbation in certain discharges [12]. However, 
perturbation from Langmuir probes can be 
significant [19] and adds ambiguity to the results, 
even if the perturbation is reduced. On the other 
hand, while OES is non-invasive, it suffers from 
reduced spatial resolution as it provides spatially-
averaged measurements across the line of sight of 
the diagnostic, and OES cannot measure the low-
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energy part of the EEDF [1]. Additionally, 
measurements of the EEDF cannot be used to 
calculate odd moments of the EVDF, such as 
components of the electron drift velocity and 
electron heat flux vectors. 

Incoherent laser Thomson scattering (ILTS) 
can non-invasively measure the one-dimensional 
EVDF with high spatial resolution, but ILTS has 
poor signal-to-noise ratio (SNR) in the tails of the 
EVDF. As a result, ILTS has not been used 
extensively for non-Maxwellian studies in low-
temperature plasmas. Refs. 20-23 used ILTS to 
measure non-Maxwellian EVDFs in low-
temperature plasmas. In addition, Refs. 22 and 24 
showed that incorrectly assuming a Maxwellian 
EVDF can produce inaccurate ILTS 
measurements of electron density, drift velocity, 
and temperature. However, there are two 
important gaps in the approach to analyzing ILTS 
measurements of non-Maxwellian EVDFs. First, 
the authors are not aware of attempts to quantify 
uncertainty in ILTS measurements of electron 
density, drift velocity, and temperature that 
incorporate the uncertainty of the type of EVDF 
that best describes the data. Second, the authors 
are not aware of any use of ILTS to quantify the 
deviation from Maxwellian EVDFs. Given the 
low SNR in the tails of the EVDF in ILTS 
measurements, robust uncertainty quantification 
is necessary to account for the possibility of non-
Maxwellian EVDFs in ILTS measurements of 
electron density, drift velocity, and temperature. 
Robust uncertainty quantification can also enable 
quantitative ILTS measurements of the deviation 
from Maxwellian EVDFs through the electron 
heat flux and excess kurtosis. 

The methods for analyzing non-Maxwellian 
velocity distribution functions (VDFs) are direct 
integration, modeling of VDFs with a single 
alternative distribution, and modeling of VDFs 
with multiple components. When the VDF can be 
directly extracted from the raw measurement, as 
in ILTS when the width of the instrument function 

is negligible compared to the electron 
temperature, the moments of the VDF can be 
calculated directly through integration of the 
measured signal; Ref. 22 did this with an ILTS 
measurement of a skewed EVDF, but the main 
downside of this method is that it does not 
provide an uncertainty for the calculated 
moments of the VDF. Analyzing non-Maxwellian 
VDFs with a single alternative distribution has 
been done with a Druyvesteyn [23], Kappa [25], 
super-Gaussian [25,26,27], and skew-Gaussian 
[28], among others [3,29,30,31]. Analyzing non-
Maxwellian VDFs with multiple components has 
been done with two Maxwellians [21,24,33], sum 
of a Maxwellian and a super-Gaussian [32], and 
the sum of a Maxwellian, super-Gaussian, and 
Kappa [34]. While alternative-distribution 
methods can be enhanced by Bayesian model 
selection [23,25], these model selection methods 
are inherently limited in their capability to 
accurately model VDFs that are not included 
within the models being selected. As a result, 
multi-component methods recreate measured 
VDFs more accurately than alternative-
distribution methods [6]. Regarding uncertainty 
quantification, multi-component methods can be 
enhanced with Bayesian inference of the 
moments of the VDF following the Bayesian 
inference of the parameters that model the VDF 
[32,35]. However, the highest-order moment that 
these multi-component Bayesian inference 
methods have inferred from the VDF is the 
effective temperature. It is also worth noting that 
the electron heat flux has been directly calculated 
from EVDF measurements in the solar wind [36]. 

This work presents a Bayesian inference 
method to analyze non-Maxwellian EVDFs with 
ILTS that assumes that the EVDF is the sum of at 
most four super-Gaussians. The method was 
tested against synthetic ILTS spectra 
representative of Maxwellian, Druyvesteyn, and 
Kappa distributions as well as skewed versions of 
these distributions. This study includes 
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Druyvesteyn distributions as they are commonly 
found in low-temperature plasmas, and it 
includes Kappa distributions as an example of a 
leptokurtic distribution, since simulations of Hall 
thrusters have found EVDFs with positive excess 
kurtosis [4,8]. The main objective of the study is 
to demonstrate that ILTS can accurately measure 
the first five moments of the one-dimensional 
EVDF for a wide variety of EVDFs, specifically 
the electron density, drift velocity, electron 
temperature, heat flux, and excess kurtosis. 
Section 2 describes the Bayesian inference 
method and the generation of the synthetic ILTS 
spectra. Section 3 evaluates the accuracy of the 
proposed method, compares the method’s 
accuracy to simpler methods, and explores the 
limits of the proposed method regarding spectral 
resolution and spectral range. 

2. Methodology 

2.1. ILTS Model Equations 

Thomson scattering is the elastic scattering of 
light off charged particles, and in the incoherent 
regime, the scattered spectrum is dominated by 
scattering off electrons. Thomson scattering is 
incoherent when 2𝜋𝑘 ≫ 𝜆𝐷𝑒, where 𝑘 is the 
observation wavevector and 𝜆𝐷𝑒 is the Debye 
length. The observation wavenumber is given by 𝑘 = 4𝜋𝜆𝑖 sin (𝜃2),  (1) 

where 𝜆𝑖 is the laser’s incident wavelength and 𝜃 
is the scattering angle. 

The spectral density of the signal measured 
by ILTS as function of wavelength is 

𝑃𝑠(𝜆) = 𝐶𝜎𝑇∆𝜆𝑛𝑒𝑘 [𝐼𝑠(𝜆) ∗ 𝑓𝑘(𝑣)],  (2) 

where 𝐶 is the calibration constant provided by 
laser Raman scattering (LRS) [37], 𝜎𝑇 is the 
Thomson scattering cross section [38], ∆𝜆 is the 
spectral resolution of the ILTS spectrum, 𝑛𝑒 is the 
electron density, 𝑘 is the observation 
wavenumber, 𝐼𝑠(𝜆) is the normalized (∆𝜆 ∑ 𝐼𝑠 =

1) instrument function of the detection system 
and needs to be measured separately, 𝑓𝑘  is the 
one-dimensional normalized EVDF along the 
observation wavevector, and ∗ denotes a discrete 
convolution. 𝑣, the electron velocity 
corresponding to a given wavelength, is given by 𝑣(𝜆) = 2𝜋𝑐𝑘 ( 1𝜆𝑖 − 1𝜆),  (3) 

when using the observation wavevector 
convention of 𝑘⃑ = 𝑘⃑ 𝑖 − 𝑘⃑ 𝑠, where 𝑘⃑ 𝑖 is the 
incident wavevector and 𝑘⃑ 𝑠 is the scattering 
wavevector. 𝑓𝑘 = 𝑛𝑒𝑓𝑘 is defined as the sum of 
four super-Gaussians, 

𝑓𝑘(𝑣) = ∑ 𝑓𝑖𝑆𝐺(𝑣)4𝑖=1   (4) 

where a super-Gaussian is defined as 

𝑓𝑖𝑆𝐺(𝑣) = 𝐴𝑖 exp (− |𝑣−𝑣𝐷,𝑖∆𝑣𝑖 |𝑏𝑖),  (5) 

To simplify the numerical implementation of 
the model equations, the problem is regularized 
in two ways. First, 𝑣𝐷,𝑖 and ∆𝑣𝑖 are expressed in 
Mm/s, such that [𝑓𝑘]~ 𝑠𝑀𝑚4. Second, log10 𝐴𝑖 
were used as model parameters instead of 𝐴𝑖. 
Third, from the recorded ILTS spectrum, 𝑃𝑠𝑅(𝜆), 
the regularized recorded ILTS spectrum is 
defined as 𝑑(𝜆) = 𝑃𝑠𝑅(𝜆)max[𝑃𝑠𝑅𝑘𝜎𝑇 ],  (6) 

and 𝐵 = max [𝑃𝑠𝑅𝑘𝜎𝑇 ]. The modeled regularized 

ILTS spectrum is then similarly defined as 

𝑀(𝜆, 𝜃 , 𝐶, 𝐼𝑠) = 𝐶𝜎𝑇∆𝜆𝑛𝑒𝑘𝐵 [𝐼𝑠(𝜆) ∗ 𝑓𝑘(𝑣, 𝜃 )],  (7) 

where 𝜃 = [log10(𝐴1), ∆𝑣1, 𝑣𝐷,1, 𝑏1, … ,log10(𝐴4), ∆𝑣4, 𝑣𝐷,4, 𝑏4]. 
2.2. Implementation of Bayesian inference 

The authors chose to implement Bayesian 
inference to effectively propagate the uncertainty 
of inferred values of 𝜃  to the uncertainty of the 
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moments of 𝑓𝑘. Given 𝑑(𝜆) and 𝐼𝑠(𝜆), the joint 
probability distribution of 𝜃  and 𝜑⃑  is given by the 
posterior probability distribution, 𝑝(𝜃 , 𝜑⃑ |𝑑, 𝐼𝑠), 
where 𝜑⃑  contains the nuisance parameters. In 
general, nuisance parameters are parameters that 
need to be inferred but that are not of primary 
interest.  The posterior probability distribution is 
given by Bayes rule as  

𝑝(𝜃 , 𝜑⃑ |𝑑, 𝐼𝑠) = 𝑝(𝑑,𝐼𝑠|𝜃⃑⃑ ,𝜑⃑⃑ )𝑝(𝜃⃑⃑ ,𝜑⃑⃑ )𝑝(𝑑,𝐼𝑠) ,  (8) 

where 𝑝(𝑑, 𝐼𝑠|𝜃 , 𝜑⃑ ) is the likelihood of observing 
the data given a set of the model parameters, 𝑝(𝜃 , 𝜑⃑ ) is the prior probability distribution of the 
model parameters, and 𝑝(𝑑, 𝐼𝑠) is the evidence. 
The evidence does not need to be modeled 
because it is a normalizing constant of the 
posterior distribution. The likelihood is 
constructed by assuming that the errors at each 
wavelength, 𝑒 = 𝑑(𝜆) −  𝑀(𝜆, 𝜃 , 𝐶, 𝐼𝑠), are 
independent and identically distributed as 𝑒 ~ 𝑁(0, 𝑠2).  

This work uses uninformative priors for 𝜃 , 
namely log10(𝐴𝑖) ~ 𝑁(0, 10), Δ𝑣𝑖~𝑈 (420 𝑘𝑚𝑠 , 5939.7 𝑘𝑚𝑠 ), 𝑣𝐷,𝑖~𝑈 (−2000 𝑘𝑚𝑠 , 2000 𝑘𝑚𝑠 ), and 𝑏𝑖~𝑈(1.5, 6). In general, uninformative priors, 
such as uniform distributions and normal 
distributions with a large standard deviation, are 
used when no prior information is available on 
the inferred parameters. The range of values for Δ𝑣𝑖 corresponds to an electron temperature range 
of 0.5 eV to 100 eV for Maxwellian EVDFs and 
can be changed depending on the expected range 
of electron temperature. The lower limit for 𝑏𝑖 
was set below 2 such that a single super-Gaussian 
could produce positive and negative excess 
kurtosis and at 1.5 such that that 𝑓𝑘 for a single 
super-Gaussian cannot be unphysically sharp at 𝑣 = 𝑣𝐷. The nuisance parameters are 𝐶 and 𝑠. 
The prior distribution of 𝐶 is the posterior 

distribution of 𝐶 from Bayesian inference of 
preliminary LRS measurements, which can be 
done following the method in Ref 23. For 𝑠, the 
prior is 𝑠~𝐸𝑥𝑝(1). The total prior distribution, 𝑝(𝜃 , 𝜑⃑ ), is simply the product of all the 
individual priors. 

Monte Carlo sampling was used to calculate 𝑝(𝜃 , 𝜑⃑ |𝑑, 𝐼𝑠) numerically. Specifically, the 
NumPyro Python package was used to 
preliminarily transform the posterior distribution 
to a Gaussian-like one with a trained autoguide 
and then implement a No-U-Turn sampler 
(NUTS) to sample from the transformed posterior 
distribution, as described in Ref. 39 and 
implemented in the “Neural Transport” NumPyro 
example [40]. The preliminary transformation of 
the posterior distribution with a trained autoguide 
is what is referred to in Refs. 39 and 40 as neural 
transport. NUTS is a user-friendly extension of 
Hamiltonian Monte Carlo (HMC) sampling that 
reduces the number of tuning parameters from 2 
to 1 [41]. Instead of relying on random walks to 
explore the posterior distribution,  HMC is a 
gradient-based Markov chain Monte Carlo 
method that converges significantly quicker than 
those that use random walks [41]. The sampling 
method described above was chosen because of 
the multimodal nature of the posterior 
distribution caused by the super-Gaussian 
mixture model, which makes it difficult for a 
sampler to efficiently explore the posterior 
distribution, even for a NUTS sampler on its own. 

Implementing this sampling method is 
around eight lines of code using the code 
presented in Ref. 40, and to incorporate Eq. 7, the 
observed or synthetic data, and the priors into the 
code, we refer to the “Bayesian Regression Using 
NumPyro” NumPyro tutorial [42].  The autoguide 
was trained on 60,000 samples, and the NUTS 
sampler was run for four independent chains of 
1000 warmup samples followed by 3000 
samples. The NUTS sampler was run with a 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
1
5
0
3



5 

 

target acceptance probability of 0.99 and a step 
size of 0.1. While NUTS sampling on the un-
transformed posterior distribution was not 
effective with the presented method, techniques 
that can combine  novel automatic differentiation 
methods with Hamiltonian Monte Carlo sampling  
may work with the presented method [43].    

Once the samples of 𝜃  are generated, the 
corresponding 𝑓𝑘(𝑣, 𝜃 ) is generated for each 
sample using Eqs. 4 and 5. When generating these 
sampled EVDFs, the lower and upper bounds of 
the electron velocity are ± 20,000 km/s and the 
resolution is 2 km/s. This was done to ensure the 
accuracy of the moments calculated from the 
sampled EVDFs. This resolution and the bounds 
were found to be appropriate for the temperature 
range considered in this work but should be 
adapted if the expected range of electron 
temperature is significantly different. For each 
sampled EVDF, the electron density, drift 
velocity along 𝑘⃑ , effective temperature along 𝑘⃑ , 
heat flux along 𝑘⃑ , and excess kurtosis along 𝑘⃑  are 
calculated through numerical integration of Eq. 9, 𝑛𝑒 = ∫𝑓𝑘𝑑𝑣, 𝑢𝑒𝑘 = 1𝑛𝑒 ∫𝑣𝑓𝑘𝑑𝑣,   

𝑇𝑒𝑘 = 𝑚𝑒𝑒𝑛𝑒 ∫ 𝑐𝑒2𝑓𝑘𝑑𝑣, 𝑞𝑒𝑘 = 𝑚𝑒2 ∫ 𝑐𝑒3𝑓𝑘𝑑𝑣,   

∆𝑒𝑘= 1𝑛𝑒 ( 𝑚𝑒𝑒𝑇𝑒𝑘)2 ∫ 𝑐𝑒4𝑓𝑘𝑑𝑣 − 3,  (9) 

where 𝑐 = 𝑣 − 𝑢𝑒𝑘. After calculating the 
moments of each sampled EVDF, the posterior 
distribution for each moment of interest can then 
be constructed. The analysis focuses on the 
excess kurtosis instead of the kurtosis because of 
its presence in the heat flux transport equation [3] 
and because the excess kurtosis and the heat flux 
quantify the first-order deviation from a 
Maxwellian EVDF. Also, although the analysis 
focuses on quantifying the heat flux, the heat flux 
is related to the skewness of the EVDF, 𝛽, by 𝛽 =2𝑞𝑒𝑘√𝑚𝑒𝑛𝑒(𝑒𝑇𝑒𝑘)3/2. 

Next, this study considers the inferred 
parameters to be the mode of the posterior 
distributions. For a given posterior distribution of 𝑛𝑒, 𝑢𝑒𝑘, 𝑇𝑒𝑘, 𝑞𝑒𝑘, or ∆𝑒𝑘, the distribution is 
binned according to the Freedman-Diaconis rule, 
and the corresponding mode of the distribution is 
then found. To quantify the uncertainty of the 
inferred parameters, this work uses the 95% 
highest density intervals (HDIs) of the posterior 
distributions. 

Figure 1 shows the key steps of the proposed 
method, including the steps used to determine the 
number of super-Gaussians used to analyze a 
given spectrum. To determine how many super-
Gaussians to use to analyze a given spectrum, the 
method first starts by assuming that the EVDF is 
described by the sum of four super-Gaussians. 
The previously described sampling procedure is 
followed, except that the NUTS sampler is only 
run with one independent chain. If one of the four 
super-Gaussians has an average log10(𝐴𝑖) that is 
more than five lower than the maximum average log10(𝐴𝑖) , then the analysis concludes that the 
given spectrum is described by the sum of at most 
three super-Gaussians. That is, if log10(𝐴1) = -6 
and log10(𝐴2) = 0, then 𝑓1𝑆𝐺(𝑣) is considered 
negligible. This process is then repeated with 
three super-Gaussians, and so on, until none of 
the considered super-Gaussians are negligible. In 
addition, if the posterior distributions of 𝑛𝑒, 𝑢𝑒𝑘, 𝑇𝑒𝑘, 𝑞𝑒𝑘, or ∆𝑒𝑘 are highly skewed, then the 
method  reduces the number of super-Gaussians 
by one; this prevents the distribution with the 
smallest log10(𝐴𝑖) from trying to match noise in 
the tails of spectrum. This work defines highly 
skewed posterior distributions as those where the 
95% HDI produces an uncertainty on one side of 
the mode that is at least five times greater than the 
uncertainty on the other side of the mode. 

In the case where the ILTS spectrum is the 
average of thousands of laser shots in an unsteady 
discharge, then 𝑛𝑒𝑓𝑘 in Eq. 2 should be replaced 
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by 〈𝑓𝑘〉, the time-averaged one-dimensional 
unnormalized EVDF along 𝑘⃑ . In this case, the 
Bayesian inference will produce samples of 〈𝑓𝑘〉, 
and for each sampled time-averaged 
unnormalized EVDF, the time-averaged electron 
density, current density along 𝑘⃑ , pressure along 𝑘⃑ , 
heat flux along 𝑘⃑  and excess kurtosis along 𝑘⃑  can 
be unambiguously calculated through numerical 
integration of Eq. 10, 〈𝑛𝑒〉 = ∫〈𝑓𝑘〉𝑑𝑣, 〈𝑗𝑒𝑘〉 = 𝑒 ∫ 𝑣〈𝑓𝑘〉𝑑𝑣,  

 

〈𝑃𝑒𝑘〉 = 𝑚𝑒 ∫ 𝑐〈𝑒〉2 〈𝑓𝑘〉𝑑𝑣,  
 

〈𝑞𝑒𝑘〉 = 𝑚𝑒2 ∫ 𝑐〈𝑒〉3 〈𝑓𝑘〉𝑑𝑣,  

〈𝑛𝑒∆𝑒𝑘〉 = (𝑚𝑒〈𝑛𝑒〉〈𝑃𝑒𝑘〉 )2 ∫ 𝑐〈𝑒〉4 〈𝑓𝑘〉𝑑𝑣 − 3〈𝑛𝑒〉,   (10) 

where 𝑐〈𝑒〉 = 𝑣 − 〈𝑗𝑒𝑘〉𝑒〈𝑛𝑒〉. In the presence of plasma 

oscillations, the interpretations of 〈𝑞𝑒𝑘〉 and 〈𝑛𝑒∆𝑒𝑘〉 are more nuanced as they can be nonzero 
even if the instantaneous EVDFs are Maxwellian. 
For example, if 𝑛𝑒 and 𝑢𝑒𝑘 oscillate out of phase, 
then 〈𝑞𝑒𝑘〉 can be nonzero even if 𝑞𝑒𝑘 is zero at 
every point in time, and if 𝑛𝑒 and 𝑇𝑒𝑘 oscillate out 
of phase, then 〈𝑛𝑒∆𝑒𝑘〉 can be nonzero even if Δ𝑒𝑘 
is zero at every point in time. 

2.3. Generation of Synthetic ILTS Spectra 

To evaluate the capabilities of the Bayesian 
inference methodology, the method needs to be 
tested against synthetic ILTS spectra. The first 
step in creating the synthetic spectra is defining 
the synthetic EVDFs. The four symmetric EVDFs 
this study considers are the 1D versions of the 
Maxwellian, Druyvesteyn, and Kappa 
distributions [44], defined as 𝑓𝑀 = 1√𝜋𝑣𝑡ℎ2 exp (− (𝑣−𝑣𝐷)2𝑣𝑡ℎ2 ),  (11) 

𝑓𝐷 = √ 𝜋Γ(54)6Γ(34)3𝑣𝑡ℎ2 erfc (2Γ(54)(𝑣−𝑣𝐷)23Γ(34)𝑣𝑡ℎ2 ),  (12) 

𝑓𝜅 = Γ(𝜅+3/2)Γ(𝜅+1) (1+(𝑣−𝑣𝐷)2𝜅𝑣𝑡ℎ2 )−(𝜅+3/2)
√𝜋𝜅𝑣𝑡ℎ2 , (13) 

respectively, where 𝑣𝑡ℎ = √2𝑒𝑇𝑒𝑚𝑒 . Next, from 

these symmetric EVDFs, skewed versions of 
Maxwellian, Druyvesteyn, and Kappa 
distributions are created with the transformation 
below, 𝑓𝑠𝑘𝑒𝑤 = 𝑓 (1 − 𝑎 erf (2𝑏(𝑣−𝑣𝐷)𝑣𝑡ℎ2 )),  (14) 

where 𝑎 and 𝑏 are parameters that describe the 
skewness of the distributions. The 9 EVDFs that 

 

Figure 1. Schematic of key steps of the proposed Bayesian inference method 
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this work tests the presented methodology against 
are described in Table 1 and plotted in Figs. 2-6. 
Table 1 includes five other distributions that are 
small variations of the EVDFs corresponding to 
spectra 1-9. Because a and b in Eq. 14 change the 
effective temperature and drift velocity of the 
EVDF, the values for 𝑣𝐷 and 𝑇𝑒 that we input in 
Eqs. 11-13 are those that ensure the 
corresponding values of 𝑢𝑒 and 𝑇𝑒 in Table 1. 

Spectra 1-12 are meant to evaluate the 
methodology on EVDFs with different excess 
kurtosis and skewness. Spectrum 13 is meant to 
evaluate the methodology with different drift 
velocities. The impact of the drift velocity is to 
shift the rejection region within the EVDF, so 
Spectrum 13 effectively evaluates the 
methodology when the rejection region is not at 
the peak of the EVDF. Spectrum 14 has the same 
EVDF as spectrum 7 but at a higher electron 
temperature, which evaluates the effect of a 
smaller rejection region with respect to the width 
of the EVDF. Lastly, spectra 15 and 16 have the 
same EVDF as spectrum 6 but at different 
temperatures and the same reference detection 
system, so spectra 15 and 16 are meant to 
evaluate the flexibility of the methodology on a 

single detection system. It is important to note 
that for a given stray light filtering method and 
detection system, the effect of the rejection region 
is directly related to the effect of the spectral 
resolution. 

To create a realistic synthetic ILTS spectra 
from a synthetic EVDF, it is necessary to use a 
realistic rejection region, instrument function, 

 

Figure 3. EVDFs corresponding to spectra 1, 4, 
and 7, representing Maxwellian, Druyvesteyn, 
and Kappa (𝜅 =10) distributions, respectively. Y-
axis is plotted on a log scale to show the tails of 
the EVDFs. 

 

Figure 2. EVDFs corresponding to spectra 1, 4, 
and 7, representing Maxwellian, Druyvesteyn, 
and Kappa (𝜅 =10) distributions, respectively.  

 

Figure 4. EVDFs corresponding to spectra 1, 2, 
and 3, representing a Maxwellian distribution and 
its skewed counterparts. 
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and wavelength array. The choices of rejection 
region and instrument function are based on a 
reference detection system from a combination of 
low-temperature ILTS diagnostics that use 
volume Bragg grating based notch filters (VBG-
NFs) and an ICCD [45, 46]. The reference 
rejection region will have a width of 2.5 nm, and 
the reference instrument function will be a 
Gaussian distribution centered at 532 nm with a 
standard deviation of 0.5 nm. The reference 
wavelength array will have 1024 elements and 

will be centered at 532 nm with a range of 17 nm. 
This reference detection system is denoted as 
detection system A.  

In addition, for an accurate analysis, different 
EVDFs may require a higher spectral resolution 
or the same spectra resolution with a wider 
wavelength range. Because of this, the analysis 
will also consider different reference detection 
systems to illustrate the benefit of using different 
detection systems or acquisition strategies to 
analyze different EVDFs. Detection system B has 
the same rejection region, instrument function, 
and spectral resolution as detection system A, but 
its wavelength range is 34 nm. Detection system 
B is representative of acquiring two different 
spectra with the same detection system but with 
each spectrum being centered at different 
wavelengths. Detection system C has half the 
rejection region of system A, an instrument 
function with half the standard deviation of that 
of system A, twice the spectral resolution of 
system A, and the same spectral range as system 
A. Detection system C is representative of using 
a higher resolution grating than that used for 
system A, but acquiring two different spectra to 
achieve the same spectral range. Detection 
system D has the same rejection region, 
instrument function, and spectral resolution as 

 

Figure 6. EVDFs corresponding to spectra 7, 8, 
and 9, representing a Kappa distribution (𝜅 =10) 
and its skewed counterparts. 

 

Figure 5. EVDFs corresponding to spectra 4, 5, 
and 6, representing a Druyvesteyn distribution 
and its skewed counterparts. 

 

Figure 7. Synthetic ILTS spectrum of spectrum 
9 on detection system B and an SNR of 20. Also 
shown is the corresponding synthetic spectrum 
with no noise and no rejection region. 
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system C but has 1.5 times the spectral range of 
system A. Detection system E has the same 
rejection region, instrument function, and 
spectral resolution as system C, but has the same 
spectral range as system B, and detection system 
F has twice the spectral range of detection system 
E and is the same otherwise.  

Next, since 𝜎𝑇 is constant between the 
generation of the synthetic spectra and the 
application of the Bayesian methodology, 𝜎𝑇 was 
set to 1 in the implementation of the 
methodology. An incident wavelength of 532 nm, 
a scattering angle of 90°, and a calibration 
constant of 𝐶 = 0.5 are also assumed. From Eqs. 
1-3, the synthetic ILTS spectra for a given 
synthetic EVDF is then constructed. The last step 
to generate the realistic ILTS spectra is to add 

Gaussian noise to the spectra, which is done with 
an SNR of 20 decibels. These SNR and noise 
profiles are representative of real ILTS 
measurements on low-temperature plasmas. 
Spectra 9 and 14 are shown in Figs. 7 and 8 to 
show how the drift velocity changes where the 
rejection region is with respect to the shape of the 
spectrum. 

Lastly, to evaluate the Bayesian inference 
methodology, an example prior distribution for 
the LRS calibration constant needs to be defined. 
The example prior distribution used in this work 
is a normal distribution centered at 𝐶 = 0.5 with 
a standard deviation of 0.025. The standard 
deviation is chosen to represent the 10% 
uncertainty in the Raman scattering cross section 
of N2 that typically dominates the uncertainty in 

Spectrum 
# 

Distribution 

type 

Detection 

system 

Number 
of 𝑓𝑖𝑆𝐺 

a b 𝑢𝑒 
(km/s) 

𝑇𝑒 
(eV) 

𝑞𝑒 
(W/cm2) 

Δ𝑒 

1 Maxwellian A 1 0 0 0 7 0 0 

2 Maxwellian B 2 0.2 1 0 7 0.525 0.045 

3 Maxwellian B 3 0.7 3 0 7 2.034 1.201 

4 Druyvesteyn B 2 0 0 0 7 0 -0.532 

5 Druyvesteyn D 2 0.2 1 0 7 0.779 -0.483 

6 Druyvesteyn D 4 0.7 3 0 7 3.265 0.716 

7 Kappa = 10 D 2 0 0 0 7 0 0.333 

8 Kappa = 10 B 2 0.2 1 0 7 0.403 0.379 

9 Kappa = 10 D 3 0.7 3 0 7 1.448 1.575 

10 Kappa = 30 D 2 0 0 0 7 0 0.103 

11 Kappa = 20 D 2 0 0 0 7 0 0.158 

12 Kappa = 5 D 2 0 0 0 7 0 0.749 

13 Kappa = 10 F 2 0 0 0 25 0 0.333 

14 Kappa = 10 E 3 0.7 3 400 7 1.448 1.575 

15 Druyvesteyn D 3 0.7 3 0 1.03 0.183 0.716 

16 Druyvesteyn D 4 0.7 3 0 10.95 6.391 0.716 

 

Table 1. Properties of the 16 synthetic spectra, including the underlying type of symmetric EVDF, the 
values of 𝑎 and 𝑏 used in Eq. 14, and the corresponding values of the electron drift velocity, effective 
temperature, heat flux, and excess kurtosis. For all cases, the electron density was 1017 𝑚−3. Also shown 
are the detection systems that were necessary to accurately analyze the spectra and the number of super-
Gaussians required to describe the spectra. For the Kappa distributions, the value of 𝜅 is denoted. 
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the calibration constant obtained from LRS. In 
terms of processing time on a standard laptop, if 
using the sum of four super-Gaussians with the 
high spectral resolution of detection system D, 
analysis of a single spectrum takes around 15 
minutes, and it takes around 3 minutes for the 
sum of two super-Gaussians with detection 
system B.  

3. Results and Discussion 

In this section, the Bayesian inference 
method is evaluated on the synthetic spectra 
shown in Section 2.3 regarding the method’s 
accuracy and precision. The evaluation primarily 
focuses on the method’s accuracy and precision 
of inferences of the heat flux and excess kurtosis. 
It is found that the methodology performs better 
on certain spectra, and this section also compares 
the proposed method to a simplified method that 
treats the EVDFs as sums of Gaussians. The 
method is considered to have adequate accuracy 
when the 95% HDIs of the first five moments of 
the EVDF contain the true values listed in Table 
1. An important general finding is that for all the 
spectra considered, the proposed method is 
adequately accurate for inferences of the electron 
density, drift velocity, and heat flux. In addition, 

because the heat flux and excess kurtosis are 
deviations from Maxwellian EVDFs and thus 
have true values at or close to zero, it is not 
always appropriate to assess the method’s 
precision with relative uncertainty. Instead of 
focusing on relative uncertainty when the inferred 
values are close to zero, the analysis will relate 
the bounds of the 95% HDI to the minimum 
detectable values of the heat flux and excess 
kurtosis with ILTS. 

3.1. Evaluation of the Proposed Method 

At an SNR of 20, the minimum detectable 
values of the electron heat flux and excess 
kurtosis can be approximated by the results in 
Table 2 of the analysis on spectra 1 and 4, 
respectively. From the 95% HDI of the excess 
kurtosis for spectrum 1, the minimum detectable 
excess kurtosis at 20 SNR is approximately ± 
0.07. From the 95% HDI of the heat flux for 
spectrum 4, the minimum detectable excess 
kurtosis at 20 SNR is approximately ± 0.04 
W/cm2. In general, it is more useful to consider 
the minimum detectable skewness, which in this 
case would be ± 0.006. Additionally, whenever 
the true value of a property is 0 or less than the 
minimum detectable value,  it is found that the 
95% HDI includes 0. The analysis can then 

 

Figure 8. Synthetic ILTS spectrum of spectrum 
14 on detection system B and an SNR of 20. 
Also shown is the corresponding synthetic 
spectrum with no noise and no rejection region. 

 

Figure 9. Inferred EVDF from spectrum 6 using 
the presented method. Also shown is the 
corresponding exact EVDF. 
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consider the accuracy and precision of the 
proposed method for distributions with 
magnitudes of heat flux or excess kurtosis above 
these minimum values. 

Regarding the accuracy of the proposed 
method on skewed Maxwellians, Table 2 shows 
that the proposed method achieves adequate 
accuracy for all properties, and Table 3 shows that 
the proposed method can achieve a relative error 
of electron heat flux measurements of less than 
11%. In addition, when the true value of the 
excess kurtosis is above the minimum detectable 
value, as in spectrum 3, the method achieves a 
relative error of the excess kurtosis of 15.2%. 
This demonstrates that if the true values of the 
excess kurtosis and heat flux are above the 
minimum detectable values for a given SNR, then 
ILTS can accurately infer the excess kurtosis and 
heat flux for skewed Maxwellians. In terms of the 

precision of such inferences, the relative 
uncertainty of the inferred heat flux and excess 
kurtosis decreases as the deviation from 

 

Figure 10. Inferred EVDF from spectrum 15 
using the presented method. Also shown is the 
corresponding exact EVDF. 

# 𝑛𝑒 (1016 m-3) 𝑢𝑒 (km/s) 𝑇𝑒 (eV) 𝑞𝑒 (mW/mm2) 10Δ𝑒 

1 9.8 + 0.9 / - 0.6 1.2 + 8.4 / - 7 6.96 + 0.18 / - 0.13 0 -0.46 + 0.75 / - 0.70 

2 9.9 + 0.8 / - 0.6 2.5 + 7.8 / - 7.7 7.00 + 0.15 / - 0.09 4.89 ± 1.35 0.74 + 0.80 / - 0.68 

3 10.0 + 0.9 / - 0.7 -3.1 + 8.8 / - 9.6 6.78 + 0.27 / - 0.14 18.18 + 3.89 / - 3.06 10.19 + 1.82 / - 1.30 

4 9.9 ± 0.7 -1.6 + 6.4 / - 5.9 7.06 ± 0.10 -0.01 + 0.42 / - 0.35 -5.26 + 0.34 / - 0.38 

5 10.3 + 0.5 / - 0.9 -3.1 + 6.0 / - 6.8 7.01 + 0.07 / - 0.10 7.11 + 1.06 / - 0.83 -4.97 + 0.33 / - 0.25 

6 9.8 + 0.9 / - 0.6 -2.4 + 9.1 / - 9.5 6.96 + 0.19 / - 0.13 30.34 + 4.47 / - 3.12 6.60 + 1.17 / - 0.92 

7 10.1 + 0.3 / - 0.6 1.4 + 4.9 / - 4.1 6.87 + 0.12 / - 0.11 -0.19 ± 0.50 2.12 + 0.76 / - 0.64 

8 9.9 + 0.8 / - 0.7 2.7 + 7.3 / - 6.6 6.92 + 0.13 / - 0.12 3.85 + 1.02 / - 1.15 1.84 + 0.80 / - 0.90 

9 9.9 + 0.6 / - 0.5 -8.5 + 10.4 / - 10.3 6.88 + 0.32 / - 0.21 11.37 + 4.68 / - 3.26 14.09 + 3.27 / - 2.19 

10 10.1 + 0.4 / - 0.6 2.9 + 4.9 / - 4.8 7.04 + 0.10 / - 0.09 0.15 + 0.56 / - 0.32 1.10 + 0.47 / - 0.36 

11 10.0 ± 0.6 -2.4 + 5.5 / - 5.9 7.06 + 0.12 / - 0.15 -0.38 + 0.60 / - 0.78 1.53 + 0.91 / - 0.71 

12 10.0 ± 0.6 -4.5 + 5.0 / - 5.1 6.74 + 0.16 / - 0.14 -0.16 + 0.58 / - 0.68 4.21 + 1.16 / - 1.11 

13 9.8 + 0.8 / - 0.6 3.9 + 12.6 / - 15.7 24.8 + 0.6 / - 0.5 0.54 + 7.74 / - 11.62 2.93 + 1.63 / - 0.94 

14 9.8 + 0.6 / - 0.4 401 + 10 / - 12 6.81 + 0.22 / - 0.15 14.23 + 4.37 / - 5.95 12.29 + 1.94 / - 1.29 

15 9.7 + 0.8 / - 0.4 -0.3 + 3.3 / - 2.5 1.02 + ± 0.02 1.83 + 0.26 / - 0.18 5.79 + 1.42 / - 0.90 

16 9.9 + 0.9 / - 0.7 -0.8 + 12.6 / - 13.7 11.0 ± 0.3 61.93 + 10.60 / - 7.78 6.93 + 1.28 / - 1.20 

 

Table 2. Inferred moments of the EVDF from the synthetic spectra using the presented Bayesian inference 
method. Inferences are presented as the mode of the posterior distributions and uncertainty bounds based 
on the 95% HDI of the posterior distributions. Values are bolded when the true value in Table 1 is not 
within the 95% HDI. 
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Maxwellian EVDFs increases, as shown in Table 
4. Relative uncertainties for the electron heat flux 
are between 15% and 30%, and when the excess 
kurtosis is above the minimum detectable value, 
the relative uncertainty is around 15%. 

As for the accuracy of the proposed method 
on Druyvesteyn distributions and their skewed 
counterparts, Table 2 shows that the proposed 
method achieves adequate accuracy for all 
properties. From Table 3, the relative errors in 
heat flux and excess kurtosis are all below 10% 
when 𝑇𝑒 =7 eV. From Table 4, all relative 
uncertainties are below 20%, with the excess 
kurtosis having relative uncertainties below 10% 
when the heat flux is low and 𝑇𝑒 =7 eV. 
Additionally, the electron temperatures of spectra 
15 and 16 represent approximate lower and upper 
limits of electron temperature, respectively, at 
which the corresponding shape of the EVDF can 
be accurately analyzed with the proposed method 
with detection system D. The increased relative 
error and relative uncertainty in the excess 
kurtosis for spectrum 15 are caused by the 
increased effect of the rejection region. The 
increased effect of the rejection region can also 
be visualized in the inferred EVDFs in Figs. 9 and 

10 and is seen to decrease the accuracy of the 
inferred EVDF both within and outside the 
rejection region. In this case, the lower limit for 
the electron temperature corresponded to when 
one of the super-Gaussians reached the lower 
limit of Δ𝑣𝑖 of 420 km/s. While the analysis of 
spectrum 16 has a similar accuracy and precision 
as that on spectrum 6, at even higher electron 
temperatures, inaccuracies and imprecision are 

 

Figure 11. Inferred EVDF from spectrum 6 using 
the presented method. Also shown is the 
corresponding exact EVDF. Y-axis is plotted on a 
log scale to show the tails of the EVDFs. 

 

Figure 12. Inferred EVDF from spectrum 4 using 
the presented method. Also shown is the 
corresponding exact EVDF. 

 

Figure 13. Inferred EVDF from spectrum 4 using 
the presented method. Also shown is the 
corresponding exact EVDF. Y-axis is plotted on a 
log scale to show the tails of the EVDFs. 
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caused by a smaller proportion of the EVDF 
being included in the analysis. 

In general, it is found that the inferences of 
electron heat flux and excess kurtosis are more 
precise for Druyvesteyn EVDFs and their skewed 
counterparts than for skewed Maxwellian 
EVDFs. This is likely due to the depleted tails of 
Druyvesteyn distributions. The tails of the 
EVDFs are generally below the noise floor of 
ILTS spectra, so with depleted tails, more 
information is located above the noise floor. 
Since EVDFs with depleted tails are more 
common in low-temperature plasmas, this 
indicates that ILTS is well suited to infer the 

higher-order moments of EVDFs in low-
temperature plasmas. However, non-Maxwellian 
EVDFs in low-temperature plasma can have 
sudden depletion of the tails after the threshold 
energy of either an inelastic collision [47] or of 
the sheath potential [4, 8], and if this threshold 
energy occurs below the noise floor of ILTS, then 
the proposed method would not enable ILTS to 
detect such EVDFs. In addition, for the case of 
spectrum 6, the accuracy of the inferred EVDF 
below the noise floor is surprisingly high, as 
shown in Fig. 11, which is further evidence that 
Druyvesteyn EVDFs and their skewed 
counterparts contain a significant amount of 

# 
Relative uncertainty in 𝑞𝑒 (%) 

Relative 
uncertainty in Δ𝑒 

(%) 
2 ± 27.6 + 108.1 / - 91.9 

3 + 21.4 / - 16.8 + 17.9 / - 12.8 

4 - + 6.5 / - 7.2 

5 + 14.9 / - 11.7 + 6.6 / - 5.0 

6 + 14.7 / -10.3 + 17.7 / - 13.9 

7 - + 35.8 / - 30.2 

8 + 26.5 / - 29.9 + 43.5 / - 48.9 

9 + 41.2 / - 28.7 + 23.2 / - 15.5 

10 - + 42.7 / - 32.7 

11 - + 40.5 / - 53.6 

12 - 27.6 / - 26.4 

13 - + 55.6 / - 32.1 

14 + 30.7 / - 41.8 + 15.8 / - 10.5 

15 + 14.2 / - 9.8 + 24.5 / - 15.5 

16 + 17.1 / - 12.6 + 18.5 / - 17.3 

 

Table 4. Relative uncertainties of the heat flux and 
excess kurtosis from the presented method for all the 
spectra with either a nonzero true heat flux or true 
excess kurtosis. When the true value of the heat flux 
is zero, the relative uncertainty is not shown. 
Relative error is based on the uncertainty bounds 
from the 95% HDI of the posterior relative to the 
mode of the posterior distribution. 

# 
Relative error in 𝑞𝑒 (%) 

Relative error in Δ𝑒 (%) 

2 6.9 64.4 

3 10.6 15.2 

4 - 1.1 

5 9.7 2.9 

6 7.1 7.8 

7 - 36.3 

8 4.5 51.5 

9 21.5 10.5 

10 - 6.8 

11 - 3.16 

12 - 43.8 

13 - 12.0 

14 1.73 22.0 

15 0 19.1 

16 3.1 3.2 

 

Table 3. Relative errors of the heat flux and 
excess kurtosis from the presented method for all 
the spectra with either a nonzero true heat flux or 
true excess kurtosis. When the true value of the 
heat flux is zero, the relative error is not shown. 
Relative error is based on the mode of the 
posterior distribution with respect to the true 
value. 
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information above the noise floor. Lastly, the 
accurate inference for Druyvesteyn distributions 
is also seen in Figs. 12 and 13. 

Similar reasoning explains the effects of the 
spectral resolution, since if the rejection region 
takes up a larger proportion of the spectrum, then 
less information is available, which decreases the 
accuracy and precision. For a constant detection 
system, the effect of the rejection region becomes 
greater at lower electron temperatures, such that 
each type of EVDF has a lower limit for the 
electron temperature at which a detection system 
can be used to accurately analyze that type of 
distribution. In addition, because of the finite 
bandwidth of VBG-NFs, each type of EVDF has 
a fundamental lower limit for the electron 
temperature for which ILTS can be accurately 
used to analyze that type of EVDF. The 
Maxwellian and Druyvesteyn distributions 
analyzed in this work are above these lower 
limits. 

The effect of relative spectral range has 
competing effects. For a given detection system, 
as electron temperature increases, the tails of the 
EVDF are truncated, which decreases the amount 
of information in the spectrum, but the effect of 

the rejection region decreases, which increases 
the amount of information available. However, 
for sufficiently high electron temperatures, the 
increased benefit of a smaller rejection region is 
negligible, and the increasing effect of truncated 
tails will produce inaccurate and  imprecise 
inferences. This may explain why spectrum 14 
does not experience a noticeable decrease in 
accuracy or precision with respect to spectrum 6, 
even though some information above the noise 
floor in the tails of the EVDF of spectrum 16 is 
lost when using detection system D. 

Regarding its efficacy on Kappa 
distributions, the method does not accurately 
capture the electron temperature or the excess 
kurtosis if the skewness and temperature are too 
low, as in spectra 7, 8, and 12. Even for these 
inaccurate cases, the proposed method is 
adequately accurate for the inferences of the 
electron density, drift velocity, and heat flux. The 
relative error in the excess kurtosis decreases to 
around 10% for sufficiently high heat flux, 
sufficiently low excess kurtosis, and higher 
electron temperature, as shown by spectra 9, 10, 
11, and 13, respectively. The inferred EVDF for 
spectrum 11 is shown in Figs. 14 and 15, as it is  

 

Figure 14. Inferred EVDF from spectrum 11 
using the presented method. Also shown is the 
corresponding exact EVDF. 

 

Figure 15. Inferred EVDF from spectrum 11 
using the presented method. Also shown is the 
corresponding exact EVDF. Y-axis is plotted on a 
log scale to show the tails of the EVDFs. 
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Figure 17. Inferred ILTS spectrum from spectrum 
14 using the presented method. Also shown are 
the corresponding exact spectrum and the 
corresponding synthetic noisy spectrum on 
detection system E with an SNR of 20. 

 

Figure 16. Inferred ILTS spectrum from 
spectrum 9 using the presented method. Also 
shown are the corresponding exact spectrum and 
the corresponding synthetic noisy spectrum on 
detection system D with an SNR of 20. 

# 𝜃⃗1 (−,𝑀𝑚𝑠 ,𝑀𝑚𝑠 ,−) 𝜃⃗2 (−, 𝑀𝑚𝑠 , 𝑀𝑚𝑠 , −)  𝜃⃗3 (−, 𝑀𝑚𝑠 , 𝑀𝑚𝑠 , −)  𝜃⃗4 (−, 𝑀𝑚𝑠 , 𝑀𝑚𝑠 , −)  
2 0.12, 1.28, -0.10, 1.85  -0.09, 1.91, 0.12, 2.42 - - 
3 0.16, 1.03, -0.29, 1.58 0.00, 0.50, 0.36, 2.66 -0.51, 2.60, 0.30, 2.93 - 
4 0.23, 1.67, 0.01, 2.48 -0.48, 2.20, -0.04, 5.23 - - 
5 0.00, 2.06, 0.10, 3.71 -0.06, 1.21, -0.20, 2.17 - - 
6 -0.14, 1.04, -0.16, 3.41  -0.31, 1.45, -0.63, 3.58 -0.33, 0.60, 0.28, 3.14 -0.44, 2.34, 0.58, 3.23 

9 0.03, 0.57, 0.32, 2.61 0.00, 0.92, -0.41, 1.58 -0.46, 2.39, 0.26, 2.46 - 
10 0.27, 1.56, 0.01, 1.96 -1.20, 1.22, -0.26, 3.89 - - 
11 0.25, 1.53, -0.01, 1.85 -0.90, 1.52, 0.11, 3.77 - - 

 

Table 5. Means of the posterior distributions of the super-Gaussian model parameters, 𝜃⃗, as defined 
in Section 2.1. Results were obtained from the synthetic spectra using the proposed method. For 
readability, 𝜃⃗ is split into 𝜃⃗1, 𝜃⃗2, 𝜃⃗3, and 𝜃⃗4, corresponding to the individual super-Gaussians. As 
displayed in the table, 𝜃⃗𝑖 = [log10(𝐴𝑖), ∆𝑣i, 𝑣𝐷,i, 𝑏i]. 𝜃⃗ is only presented for spectra corresponding to 
unique non-Maxwellian EVDFs and for spectra for which the proposed method is adequately accurate. 
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the spectrum with the lowest relative uncertainty 
for the excess kurtosis among all the EVDFs with 
Kappa distributions. However, even for the 
accurate cases of spectra 9, 10, 11, and 13, the 
relative uncertainties for the heat flux and excess 
kurtosis are higher than for the analysis of 
Maxwellian distributions. Additionally, the 
proposed method is not adequately accurate for 
spectrum 14 for inferences of electron 
temperature and excess kurtosis; this inaccuracy 
is due to the drift velocity, which effectively shifts 
the location of the rejection region along the 
EVDF, suggesting that different locations of the 
EVDF contain more important information than 
others. The importance of the location of the 
rejection region is also relevant to the effect of 
poorly subtracted emission spectra when 
collecting ILTS data, as poorly subtracted 

emission spectra would lead to additional 
rejection regions. 

Figures 16 and 17 compare the inferred ILTS 
spectra from spectra 9 and 14, respectively, to 
their corresponding synthetic spectra. The 
inferred spectra are reconstructed from the 
inferred EVDFs and the instrument function.  
Interestingly, the inferred spectrum for spectrum 
9 deviates from the exact spectrum within the 
rejection region, which is not the case for 
spectrum 14. Although the difference between 
synthetic spectra 9 and 14 is predominantly the 
location of the rejection region relative to the 
shape of the EVDF, the reduced accuracy of the 
inference on spectrum 14 is not caused by 
inaccuracies within the rejection region. Instead, 
the location of the rejection region in spectrum 14 

# 𝑛𝑒 (1016 m-3) 𝑢𝑒 (km/s) 𝑇𝑒 (eV) 𝑞𝑒 (mW/mm2) 10Δ𝑒 

1 10.0 + 0.7 / - 0.8 0.7 + 8.3 / - 8.6 6.98 + 0.13 / - 0.12 0 0 

2 10.0 ± 0.7 -3.9 + 7.9 / - 6.5 7.03 + 0.09 / - 0.10 4.35 + 1.27 / - 1.14 0.72 + 0.39 / - 0.38 

3 10.2 + 1.0 / - 0.8 -3.6 + 10.9 / - 9.5 7.19 + 0.22 / - 0.19 20.15 + 4.97 / - 3.91 16.83 + 1.10 / - 0.91 

4 9.9 + 1.0 / - 0.7 3.7 + 8.4 / - 6.9 7.30 + 0.07 / - 0.08 -0.17 + 1.14 / - 1.06 -4.17 + 0.22 / - 0.27 

5 10.0 ± 0.7 -0.9 + 7.8 / - 0.7 7.30 + 0.07 / - 0.08 9.05 + 1.37 / - 1.07 -3.42 + 0.22 / - 0.19 

6 9.6 + 0.6 / - 0.5 4.9 + 9.0 / - 9.3 7.02 + 0.15 / - 0.14 31.86 + 2.84 / - 4.23 7.58 + 0.78 / - 1.13 

7 9.9 + 0.8 / - 0.7 0.3 + 7.0 / - 8.6 6.94 + 0.15 / - 0.13 -0.7 + 1.33 / - 1.50 2.74 + 0.96 / - 0.74 

8 9.8 + 1.0 / - 0.6 4.2 + 7.9 / - 7.8 6.92 + 0.14 / - 0.12 5.38 + 2.29 / - 1.37 2.90 + 0.92 / - 0,77 

9 10.0 + 0.8 / - 0.6 -1.4 + 11.6 / - 10.5 7.37 ± 0.21 12.51 + 4.08 / - 3.92 18.26 + 1.23 / - 1.14 

10 9.9 + 0.7 / - 0.5 -7.7 + 6.3 / - 5.2 6.97 + 0.08 / - 0.10 -0.25 + 0.44 / - 0.49 0.42 + 0.35 / - 0.24 

11 10.0 ± 0.6 4.5 + 5.1 / - 6.0 6.92 + 0.08 / - 0.10 0.10 + 0.46 / - 0.47 0.51 + 0.39 / - 0.21 

12 9.9 + 0.9 / - 0.6 -7.3 + 8.0 / - 7.8 6.82 + 0.19 / - 0.14 -0.64 + 1.27 / - 1.84 4.75 + 1.44 / - 1.00 

13 10.0 + 0.6 / - 0.8 2.5 + 11.3 / - 9.7 25.1 + 0.3 / - 0.4 3.04 + 8.15 / - 8.35 3.48 + 0.83 / - 0.76 

14 10.0 + 0.6 / - 0.7 389 + 11 / - 9 7.04 ± 0.19 9.42 + 4.17 / - 2.74 16.69 + 1.25 / - 1.03 

15 9.9 ± 0.6 1.1 ± 2.7 1.09 ± 0.02 2.07 + 0.23 / - 0.16 8.69 + 0.60 / - 0.50 

16 9.8 ± 0.6 2.2 + 14.4 / - 11.5 11.2 + 0.3 / - 0.2 68.46 + 9.49 / - 7.85 8.51 + 0.95 / - 1.05 

 

Table 6. Inferred moments of the EVDF from the synthetic spectra using the simplified Bayesian inference 
method. Inferences are presented as the mode of the posterior distributions and uncertainty bounds based 
on the 95% HDI of the posterior distributions. Values are bolded when the true value in Table 1 is not 
within the 95% HDI. 
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results in reduced accuracy of the inferred 
spectrum in the tails of the spectrum.  

The worse performance of the proposed 
method on Kappa distributions is for the same 
reason that the method performs well for 
Druyvesteyn distributions. For distributions with 
positive excess kurtosis, more information is in 
the tails below the noise floor. This explains the 
improved performance of the method for 
sufficiently high heat flux, sufficiently low excess 
kurtosis, and higher electron temperature. If the 
skewness is high enough, as in spectrum 9, then 
there is sufficient information above the noise 
floor for the proposed method to be adequately 
accurate. For higher electron temperatures, 
assuming that the same proportion of the EVDF 
is analyzed but with a constant width of the 
rejection region, then the effect of the rejection 
region will reduce, and the same amount 
information is lost in the tails. The adequate 
accuracy of the analysis of spectrum 13 indicates 
that a smaller rejection region can improve the 
performance of the proposed method on Kappa 
distributions. However, in general, careful 
consideration of the detection system and 
expected SNR, drift velocity, and temperature is 
necessary to determine whether ILTS can be used 
to accurately analyze a specific EVDF with low 
skewness and positive excess kurtosis. In fact, 
similar careful consideration of the detection 
system and acquisition strategy is necessary to 
accurately measure higher-order moments from 
EVDFs with negative excess kurtosis. This can be 
seen in Table 1, since several spectra required 
analysis with reduced rejection regions, such as 
detection systems D, E, and F. 

The parameters of the inferred super-
Gaussians are shown in Table 5. Unsurprisingly, 
all the super-Gaussian components inferred for 
the Druyvesteyn distribution and its skewed 
counterparts have depleted tails. On the other 
hand, there is always one super-Gaussian 
component with depleted tails for the inferences 

on the Kappa distribution and its skewed 
counterparts. For the high skew cases of spectra 
3, 6, and 9, the super-Gaussian component with 
the lowest density has the highest temperature by 
more than factor of 2. 

3.2. Comparison with Simplified Method 

For each spectrum, the simplified 
methodology was implemented with the same 
detection system and number of distributions as 
the proposed methodology, but each EVDF was 
the sum of Gaussians instead of super-Gaussians. 
As shown in Table 6, the simplified method has 
inadequate accuracy for the excess kurtosis for 
more spectra than the proposed method, and in 
some cases, inaccuracies are introduced for the 
drift velocities and heat flux. In particular, the 
simplified method is not adequately accurate for 
Druyvesteyn EVDFs and their skewed 
counterparts and for the high-skew EVDFs of 
spectra 3 and 9.  Meanwhile, spectra 7 and 8 are 
the only spectra for which the proposed method 
does not have adequate accuracy but for which 
the simplified method does have adequate 
accuracy. Because the simplified method is only 
better than the proposed method for a limited 
range of Kappa distributions, the simplified 
method is not a general improvement to the 
proposed method for Kappa distributions. In 
addition, the simplified method generally has 
smaller uncertainty bounds than the proposed 
method, which can be explained by the fact that 
the proposed method considers more shapes of 
the EVDF. 

Due to the inaccuracies of the simplified 
method, it is useful to consider the general impact 
of inaccuracies in the inferences of the heat flux 
and excess kurtosis. For the joint posterior 
distribution shown in Fig. 18, the drift velocity is 
most strongly correlated with the heat flux, and 
the temperature is most strongly correlated with 
the excess kurtosis. These correlations quantify 
how accounting for non-Maxwellian features is 
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necessary to accurately infer the drift velocity and 
temperature. This is observed in Table 2, as the 
proposed methodology is adequately accurate for 
both the heat flux and drift velocity for all cases, 
but whenever the proposed method is inadequate 
for the excess kurtosis, the relative error in the 
temperature inference increases. 

4. Conclusion 

In conclusion, this study has found that the 
presented Bayesian inference method can 
accurately expand the capabilities of ILTS to 
direct measurements of the electron heat flux and 
excess kurtosis. Specifically, for all the synthetic 

spectra considered, the presented method is 
adequately accurate for inferences of the heat flux 
with uncertainties ranging from around 40% to as 
low as around 10%. Notably, the method can 
accurately infer the excess kurtosis of 
Druyvesteyn distributions with an uncertainty of 
around 5%. In addition, the presented method 
performs favorably compared to a simplified 
method that only uses Gaussian distributions 
instead of super-Gaussians. However, the 
presented method does not accurately infer the 
excess kurtosis of certain Kappa distributions. To 
accurately infer the excess kurtosis of a wide 
variety of EVDFs with positive excess kurtosis 

 

Figure 18. Marginal and joint posterior distributions of the electron density, drift velocity, temperature, heat 
flux and excess kurtosis. In the marginal distributions, the 95% HDIs are denoted with the vertical dashed 
lines. In the joint distributions, the Mahalanobis contours containing the most probable 10% and 95% of 
the distribution are shown. Posterior distributions are from the proposed method on spectrum 6. 
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and low skewness, high SNR measurements are 
needed in order that a significant portion of the 
tails are above the noise floor. 

Future work should include implementing 
this method with actual measurements, which 
would enable high-fidelity validation of 
simulations that account for non-Maxwellian 
EVDFs. To do such measurements, it is necessary 
to carefully select the detection system and 
acquisition strategy to mitigate the effects of 
spectral resolution and spectral range. In addition, 
inferences of higher-order moments will be more 
affected by improper subtraction of stray light 
sources when constructing ILTS spectra. Lastly, 
although the synthetic spectra were constructed to 
replicate ILTS measurements in low-temperature 
plasmas, the presented method can be applied to 
ILTS measurements in high-temperature plasmas. 
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