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Abstract

Noninvasive direct measurements of higher-order moments of the electron velocity distribution
function (EVDF) are needed to improve the understanding of non-Maxwellian electron behavior in
various plasmas. This work presents a Bayesian inference method with Monte Carlo sampling to infer the
electron heat flux and excess kurtosis from ILTS spectra, which also improves the inferences of the lower-
order moments. The method assumes that the EVDFs are described by the sum of at most four super-
Gaussians and is tested against synthetic spectra that are representative of ITLS measurements in low-
temperature plasmas. 15 synthetic spectra are considered that include Maxwellian, Druyvesteyn, and
Kappa distributions and their skewed counterparts. For all synthetic spectra considered, the true value of
the heat flux is within the uncertainty bounds of the inference. Regarding the excess kurtosis, the true
value of the excess kurtosis is within the uncertainty bounds of the inference for all cases except for the
Kappa distributions with no or low skewness. At the signal-to-noise ratio of the synthetic spectra, the
minimum detectable skewness and excess kurtosis are around + 0.006 and + 0.07, respectively. When the
heat flux and excess kurtosis are significantly above their minimum detectable values, relative
uncertainties range between 40% and 5%. Lastly, in terms of symmetric or low-skewness EVDFs, we find
that ILTS is best suited for EVDFs with negative excess kurtosis, suggesting that ILTS can accurately and

precisely measure nonequilibrium electron properties in many low-temperature plasmas.

1. Introduction

In low-temperature plasmas, electrons can
often be in non-equilibrium [1]. Such non-
equilibrium can produce significant deviations
from Maxwellian electron velocity distribution
functions (EVDFs). Non-Maxwellian EVDFs can
result in reaction rates [1-3] and fluxes through
sheaths [4, 5] that differ significantly from those
calculated assuming Maxwellian EVDFs and in
non-conductive electron heat fluxes [6-8]. These
non-Maxwellian  effects can significantly
influence plasma composition and spatial
distributions of electron temperature [9]. While
various simulation methods can capture non-
Maxwellian electron effects [2-4, 7, 8, 10, 11],
experimental methods are needed to validate
these simulations and to improve the

understanding of non-Maxwellian electron
behavior in different plasmas.

Langmuir probes are the most common
technique used to measure non-Maxwellian
electron energy distribution functions (EEDFs)
[12-14], and optical emission spectroscopy
(OES) has also been used to measure EEDFs [15-
18]. Langmuir probes are able to measure the
EEDF from low to high electron energies (0-50
eV) [1] and strategies exist to mitigate probe
perturbation in certain discharges [12]. However,
perturbation from Langmuir probes can be
significant [19] and adds ambiguity to the results,
even if the perturbation is reduced. On the other
hand, while OES is non-invasive, it suffers from
reduced spatial resolution as it provides spatially-
averaged measurements across the line of sight of
the diagnostic, and OES cannot measure the low-
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energy part of the EEDF [1]. Additionally,
measurements of the EEDF cannot be used to
calculate odd moments of the EVDF, such as
components of the electron drift velocity and
electron heat flux vectors.

Incoherent laser Thomson scattering (ILTS)
can non-invasively measure the one-dimensional
EVDF with high spatial resolution, but ILTS has
poor signal-to-noise ratio (SNR) in the tails of the
EVDF. As a result, ILTS has not been used
extensively for non-Maxwellian studies in low-
temperature plasmas. Refs. 20-23 used ILTS to
measure non-Maxwellian EVDFs in low-
temperature plasmas. In addition, Refs. 22 and 24
showed that incorrectly assuming a Maxwellian
EVDF can produce inaccurate ILTS
measurements of electron density, drift velocity,
and temperature. However, there are two
important gaps in the approach to analyzing ILTS
measurements of non-Maxwellian EVDFs. First,
the authors are not aware of attempts to quantify
uncertainty in ILTS measurements of electron
density, drift velocity, and temperature that
incorporate the uncertainty of the type of EVDF
that best describes the data. Second, the authors
are not aware of any use of ILTS to quantify the
deviation from Maxwellian EVDFs. Given the
low SNR in the tails of the EVDF in ILTS
measurements, robust uncertainty quantification
is necessary to account for the possibility of non-
Maxwellian EVDFs in ILTS measurements of
electron density, drift velocity, and temperature.
Robust uncertainty quantification can also enable
quantitative ILTS measurements of the deviation
from Maxwellian EVDFs through the electron
heat flux and excess kurtosis.

The methods for analyzing non-Maxwellian
velocity distribution functions (VDFs) are direct
integration, modeling of VDFs with a single
alternative distribution, and modeling of VDFs
with multiple components. When the VDF can be
directly extracted from the raw measurement, as
in ILTS when the width of the instrument function

is negligible compared to the electron
temperature, the moments of the VDF can be
calculated directly through integration of the
measured signal; Ref. 22 did this with an ILTS
measurement of a skewed EVDF, but the main
downside of this method is that it does not
provide an uncertainty for the calculated
moments of the VDF. Analyzing non-Maxwellian
VDFs with a single alternative distribution has
been done with a Druyvesteyn [23], Kappa [25],
super-Gaussian [25,26,27], and skew-Gaussian
[28], among others [3,29,30,31]. Analyzing non-
Maxwellian VDFs with multiple components has
been done with two Maxwellians [21,24,33], sum
of a Maxwellian and a super-Gaussian [32], and
the sum of a Maxwellian, super-Gaussian, and
Kappa [34]. While alternative-distribution
methods can be enhanced by Bayesian model
selection [23,25], these model selection methods
are inherently limited in their capability to
accurately model VDFs that are not included
within the models being selected. As a result,
multi-component methods recreate measured
VDFs more accurately than alternative-
distribution methods [6]. Regarding uncertainty
quantification, multi-component methods can be
enhanced with Bayesian inference of the
moments of the VDF following the Bayesian
inference of the parameters that model the VDF
[32,35]. However, the highest-order moment that
these multi-component Bayesian inference
methods have inferred from the VDF is the
effective temperature. It is also worth noting that
the electron heat flux has been directly calculated
from EVDF measurements in the solar wind [36].

This work presents a Bayesian inference
method to analyze non-Maxwellian EVDFs with
ILTS that assumes that the EVDF is the sum of at
most four super-Gaussians. The method was
tested against  synthetic ILTS  spectra
representative of Maxwellian, Druyvesteyn, and
Kappa distributions as well as skewed versions of
these distributions. This study includes
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Druyvesteyn distributions as they are commonly
found in low-temperature plasmas, and it
includes Kappa distributions as an example of a
leptokurtic distribution, since simulations of Hall
thrusters have found EVDFs with positive excess
kurtosis [4,8]. The main objective of the study is
to demonstrate that ILTS can accurately measure
the first five moments of the one-dimensional
EVDF for a wide variety of EVDFs, specifically
the electron density, drift velocity, electron
temperature, heat flux, and excess kurtosis.
Section 2 describes the Bayesian inference
method and the generation of the synthetic ILTS
spectra. Section 3 evaluates the accuracy of the
proposed method, compares the method’s
accuracy to simpler methods, and explores the
limits of the proposed method regarding spectral
resolution and spectral range.

2. Methodology
2.1.1ILTS Model Equations

Thomson scattering is the elastic scattering of
light off charged particles, and in the incoherent
regime, the scattered spectrum is dominated by
scattering off electrons. Thomson scattering is
incoherent when 27” » Ape, where k is the

observation wavevector and Ap, is the Debye
length. The observation wavenumber is given by
4T . (0

k = —sin (E)’ €))]
where 4; is the laser’s incident wavelength and 6
is the scattering angle.

The spectral density of the signal measured
by ILTS as function of wavelength is

P(2) = S22 1 (2) * fr(w)]. 2)

where C is the calibration constant provided by
laser Raman scattering (LRS) [37], o7 is the
Thomson scattering cross section [38], AA is the
spectral resolution of the ILTS spectrum, n, is the
electron density, k is the observation
wavenumber, I4(A) is the normalized (AAY I; =

1) instrument function of the detection system
and needs to be measured separately, fj is the
one-dimensional normalized EVDF along the
observation wavevector, and * denotes a discrete
convolution. v, the electron velocity
corresponding to a given wavelength, is given by

1 1

o) =2 (5 -3). 3

when using the observation wavevector
convention of k = k —ks, where kl is the
incident wavevector and kS is the scattering

wavevector. fi, = n.fy is defined as the sum of
four super-Gaussians,

fiw) =T 26 ) *)
where a super-Gaussian is defined as

SG v=vp,| Pt
fi"(w) = Ajexp (— 2o ), (5)

To simplify the numerical implementation of
the model equations, the problem is regularized
in two ways. First, vp ; and Av; are expressed in
Mm/s, such that [fk]~— Second, log; 4;
were used as model parameters instead of A;.
Third, from the recorded ILTS spectrum, PR (1),

the regularized recorded ILTS spectrum is
defined as

P
d@) = —T, (6)
mor]
PR .
and B = max [U—] The modeled regularized
T

ILTS spectrum is then similarly defined as

M(A, é, C Is) — CUTMne [

1) * fir (v, 0], (1)
where §= [1og10(A1), Avy,vp 1, by, e,
log10(A4), Avy, Vp 4, b4]~

2.2.Implementation of Bayesian inference

The authors chose to implement Bayesian
inference to effectively propagate the uncertainty

of inferred values of 6 to the uncertainty of the
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moments of fi. Given d(1) and I;(4), the joint
probability distribution of f and @ is given by the
posterior probability distribution, p(6, |d, I;),
where @ contains the nuisance parameters. In
general, nuisance parameters are parameters that
need to be inferred but that are not of primary
interest. The posterior probability distribution is
given by Bayes rule as

PN d,1516,)p(0.9
p(0,51d,1;) = HHSDRCD), ®)

where p(d, Is|§, (ﬁ) is the likelihood of observing
the data given a set of the model parameters,
p(é, gﬁ) is the prior probability distribution of the
model parameters, and p(d, Is) is the evidence.
The evidence does not need to be modeled
because it is a normalizing constant of the
posterior  distribution. The likelihood is
constructed by assuming that the errors at each
wavelength, e =d(1) — M(A, é, C, IS), are
independent and identically distributed as
e ~N(0,s2).

This work uses uninformative priors for §,
namely log10(4;) ~ N(0,10),
A~ (420 2, 5939.7 1),
vpi~U (~20002,2000 ™), and
b;~U(1.5,6). In general, uninformative priors,
such as uniform distributions and normal
distributions with a large standard deviation, are
used when no prior information is available on
the inferred parameters. The range of values for
Av; corresponds to an electron temperature range
of 0.5 eV to 100 eV for Maxwellian EVDFs and
can be changed depending on the expected range
of electron temperature. The lower limit for b;
was set below 2 such that a single super-Gaussian
could produce positive and negative excess
kurtosis and at 1.5 such that that f;, for a single
super-Gaussian cannot be unphysically sharp at
v = vp. The nuisance parameters are C and s.
The prior distribution of C is the posterior

distribution of C from Bayesian inference of
preliminary LRS measurements, which can be
done following the method in Ref 23. For s, the
prior is s~Exp(1). The total prior distribution,
p(é, <ﬁ), is simply the product of all the
individual priors.

Monte Carlo sampling was used to calculate
p(é, old, IS) numerically.  Specifically, the
NumPyro Python package was used to
preliminarily transform the posterior distribution
to a Gaussian-like one with a trained autoguide
and then implement a No-U-Turn sampler
(NUTS) to sample from the transformed posterior
distribution, as described in Ref. 39 and
implemented in the “Neural Transport” NumPyro
example [40]. The preliminary transformation of
the posterior distribution with a trained autoguide
is what is referred to in Refs. 39 and 40 as neural
transport. NUTS is a user-friendly extension of
Hamiltonian Monte Carlo (HMC) sampling that
reduces the number of tuning parameters from 2
to 1 [41]. Instead of relying on random walks to
explore the posterior distribution, HMC is a
gradient-based Markov chain Monte Carlo
method that converges significantly quicker than
those that use random walks [41]. The sampling
method described above was chosen because of
the multimodal nature of the posterior
distribution caused by the super-Gaussian
mixture model, which makes it difficult for a
sampler to efficiently explore the posterior
distribution, even for a NUTS sampler on its own.

Implementing this sampling method is
around eight lines of code using the code
presented in Ref. 40, and to incorporate Eq. 7, the
observed or synthetic data, and the priors into the
code, we refer to the “Bayesian Regression Using
NumPyro” NumPyro tutorial [42]. The autoguide
was trained on 60,000 samples, and the NUTS
sampler was run for four independent chains of
1000 warmup samples followed by 3000
samples. The NUTS sampler was run with a
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target acceptance probability of 0.99 and a step
size of 0.1. While NUTS sampling on the un-
transformed posterior distribution was not
effective with the presented method, techniques
that can combine novel automatic differentiation
methods with Hamiltonian Monte Carlo sampling
may work with the presented method [43].

Once the samples of 6 are generated, the
corresponding  fj (v, é) is generated for each
sample using Eqs. 4 and 5. When generating these
sampled EVDFs, the lower and upper bounds of
the electron velocity are + 20,000 km/s and the
resolution is 2 km/s. This was done to ensure the
accuracy of the moments calculated from the
sampled EVDFs. This resolution and the bounds
were found to be appropriate for the temperature
range considered in this work but should be
adapted if the expected range of electron
temperature is significantly different. For each
sampled EVDF, the electron density, drift
velocity along k, effective temperature along k,

heat flux along E, and excess kurtosis along k are
calculated through numerical integration of Eq. 9,

1
ne = [ frdv, ugy, = n—efvfkdv,

me me

Tex = eneffeszdv, ek = TfCekadVa
_1(meN o oa _

Bor= - (%) [ etfidv =3, ©

where ¢ =v —u,. After calculating the
moments of each sampled EVDF, the posterior
distribution for each moment of interest can then
be constructed. The analysis focuses on the
excess kurtosis instead of the kurtosis because of
its presence in the heat flux transport equation [3]
and because the excess kurtosis and the heat flux
quantify the first-order deviation from a
Maxwellian EVDF. Also, although the analysis
focuses on quantifying the heat flux, the heat flux
is related to the skewness of the EVDF, 8, by 8 =
2qeky/me

ne(eTer)3/?’

Next, this study considers the inferred
parameters to be the mode of the posterior
distributions. For a given posterior distribution of
Ne, Uek> Tek> Geks OF Ay, the distribution is
binned according to the Freedman-Diaconis rule,
and the corresponding mode of the distribution is
then found. To quantify the uncertainty of the
inferred parameters, this work uses the 95%
highest density intervals (HDIs) of the posterior
distributions.

Figure 1 shows the key steps of the proposed
method, including the steps used to determine the
number of super-Gaussians used to analyze a
given spectrum. To determine how many super-
Gaussians to use to analyze a given spectrum, the
method first starts by assuming that the EVDF is
described by the sum of four super-Gaussians.
The previously described sampling procedure is
followed, except that the NUTS sampler is only
run with one independent chain. If one of the four
super-Gaussians has an average log,,(4;) that is
more than five lower than the maximum average
log10(4;) , then the analysis concludes that the
given spectrum is described by the sum of at most
three super-Gaussians. That is, if log;((41) = -6
and log;o(4,) = 0, then £5¢(v) is considered
negligible. This process is then repeated with
three super-Gaussians, and so on, until none of
the considered super-Gaussians are negligible. In
addition, if the posterior distributions of n,, Ugg,
Tek> Qer> Or Qg are highly skewed, then the
method reduces the number of super-Gaussians
by one; this prevents the distribution with the
smallest log;((4;) from trying to match noise in
the tails of spectrum. This work defines highly
skewed posterior distributions as those where the
95% HDI produces an uncertainty on one side of
the mode that is at least five times greater than the
uncertainty on the other side of the mode.

In the case where the ILTS spectrum is the
average of thousands of laser shots in an unsteady
discharge, then n, f;, in Eq. 2 should be replaced
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Figure 1. Schematic of key steps of the proposed Bayesian inference method

by (fx), the time-averaged one-dimensional
unnormalized EVDF along k. In this case, the
Bayesian inference will produce samples of {fy),
and for each sampled time-averaged
unnormalized EVDF, the time-averaged electron
density, current density along l;, pressure along k s
heat flux along k and excess kurtosis along k can
be unambiguously calculated through numerical
integration of Eq. 10,

() = [(fddv, Gor) = [ vifidv,

(Put) = e f Bl fidv,

(Geic) = 22 [ cloylfiddv,

(b = (222" f et (v - 3(n,), (10)

(Pek)

_ o Yek)
where ¢y = v e(na)’

oscillations, the interpretations of (qe,) and

In the presence of plasma

(neAy ) are more nuanced as they can be nonzero
even if the instantaneous EVDFs are Maxwellian.
For example, if n, and u, oscillate out of phase,
then (qer) can be nonzero even if g, is zero at
every point in time, and if n, and T, oscillate out
of phase, then (n,A,) can be nonzero even if A,y
is zero at every point in time.

2.3.Generation of Synthetic ILTS Spectra

To evaluate the capabilities of the Bayesian
inference methodology, the method needs to be
tested against synthetic ILTS spectra. The first
step in creating the synthetic spectra is defining
the synthetic EVDFs. The four symmetric EVDFs
this study considers are the 1D versions of the

Maxwellian,  Druyvesteyn, and  Kappa
distributions [44], defined as
PV | _(V_VD)Z)
= e (- 52). an

2
TVt

fP= nr@ erfc <2F(%)(:_:D)Z>, (12)
a@) i\ SR
( )2 —(K+3/2)
v-vp
fk _ F(K+3/2)( + ’“’%h ) (13)

I(k+1) _— ’

2eT,
€. Next, from
Mme

respectively, where v, =

these symmetric EVDFs, skewed versions of
Maxwellian, Druyvesteyn, and Kappa
distributions are created with the transformation
below,

fskew = £ (1 - aerf(%z_h’m))), (14)

ti
where a and b are parameters that describe the
skewness of the distributions. The 9 EVDFs that
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Figure 2. EVDFs corresponding to spectra 1, 4,
and 7, representing Maxwellian, Druyvesteyn,
and Kappa (k =10) distributions, respectively.

this work tests the presented methodology against
are described in Table 1 and plotted in Figs. 2-6.
Table 1 includes five other distributions that are
small variations of the EVDFs corresponding to
spectra 1-9. Because a and b in Eq. 14 change the
effective temperature and drift velocity of the
EVDF, the values for v, and T, that we input in
Eqs. [11-13 are those that ensure the
corresponding values of u, and T, in Table 1.

Spectra 1-12 are meant to evaluate the
methodology on EVDFs with different excess
kurtosis and skewness. Spectrum 13 is meant to
evaluate the methodology with different drift
velocities. The impact of the drift velocity is to
shift the rejection region within the EVDF, so
Spectrum 13 effectively  evaluates  the
methodology when the rejection region is not at
the peak of the EVDF. Spectrum 14 has the same
EVDF as spectrum 7 but at a higher electron
temperature, which evaluates the effect of a
smaller rejection region with respect to the width
of the EVDF. Lastly, spectra 15 and 16 have the
same EVDF as spectrum 6 but at different
temperatures and the same reference detection
system, so spectra 15 and 16 are meant to
evaluate the flexibility of the methodology on a

—4000 —2000 0 2000 4000
Electron velocity, vy, Lo

Figure 3. EVDFs corresponding to spectra 1, 4,
and 7, representing Maxwellian, Druyvesteyn,
and Kappa (x =10) distributions, respectively. Y-
axis is plotted on a log scale to show the tails of
the EVDFs.

single detection system. It is important to note
that for a given stray light filtering method and
detection system, the effect of the rejection region
is directly related to the effect of the spectral
resolution.

To create a realistic synthetic ILTS spectra
from a synthetic EVDEF, it is necessary to use a
realistic rejection region, instrument function,

lel0

—4000 —2000 0 2000 4000

Electron velocity, v, (52)

Figure 4. EVDFs corresponding to spectra 1, 2,
and 3, representing a Maxwellian distribution and
its skewed counterparts.
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Figure 5. EVDFs corresponding to spectra 4, 5,
and 6, representing a Druyvesteyn distribution
and its skewed counterparts.
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Figure 7. Synthetic ILTS spectrum of spectrum
9 on detection system B and an SNR of 20. Also
shown is the corresponding synthetic spectrum
with no noise and no rejection region.

and wavelength array. The choices of rejection
region and instrument function are based on a
reference detection system from a combination of
low-temperature ILTS diagnostics that use
volume Bragg grating based notch filters (VBG-
NFs) and an ICCD [45, 46]. The reference
rejection region will have a width of 2.5 nm, and
the reference instrument function will be a
Gaussian distribution centered at 532 nm with a
standard deviation of 0.5 nm. The reference
wavelength array will have 1024 elements and

lel0

3

ms
™)
w

EVDF, ., (
(S5}

4000 2000 O 2000 4000
Electron velocity, v, (ko

Figure 6. EVDFs corresponding to spectra 7, 8,
and 9, representing a Kappa distribution (x =10)
and its skewed counterparts.

will be centered at 532 nm with a range of 17 nm.
This reference detection system is denoted as
detection system A.

In addition, for an accurate analysis, different
EVDFs may require a higher spectral resolution
or the same spectra resolution with a wider
wavelength range. Because of this, the analysis
will also consider different reference detection
systems to illustrate the benefit of using different
detection systems or acquisition strategies to
analyze different EVDFs. Detection system B has
the same rejection region, instrument function,
and spectral resolution as detection system A, but
its wavelength range is 34 nm. Detection system
B is representative of acquiring two different
spectra with the same detection system but with
each spectrum being centered at different
wavelengths. Detection system C has half the
rejection region of system A, an instrument
function with half the standard deviation of that
of system A, twice the spectral resolution of
system A, and the same spectral range as system
A. Detection system C is representative of using
a higher resolution grating than that used for
system A, but acquiring two different spectra to
achieve the same spectral range. Detection
system D has the same rejection region,
instrument function, and spectral resolution as
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Spectrum  Distribution  Detection Number a b U T, qe A,
# type system  of 59 (km/s) (eV) (W/cm?)
1 Maxwellian A 1 0 0 0 7 0 0
2 Maxwellian B 2 02 1 0 7 0.525 0.045
3 Maxwellian B 3 07 3 0 7 2.034 1.201
4 Druyvesteyn B 2 0 0 0 7 0 -0.532
5 Druyvesteyn D 2 02 1 0 7 0.779 -0.483
6 Druyvesteyn D 4 0.7 3 0 7 3.265 0.716
7 Kappa=10 D 2 0 0 0 7 0 0.333
8 Kappa = 10 B 2 02 1 0 7 0.403 0.379
9 Kappa = 10 D 3 07 3 0 7 1.448 1.575
10 Kappa =30 D 2 0 0 0 7 0 0.103
11 Kappa =20 D 2 0 0 0 7 0 0.158
12 Kappa =5 D 2 0 0 0 7 0 0.749
13 Kappa =10 F 2 0 0 0 25 0 0.333
14 Kappa=10 E 3 0.7 3 400 7 1.448 1.575
15 Druyvesteyn D 3 0.7 3 0 1.03 0.183 0.716
16 Druyvesteyn D 4 07 3 0 1095  6.391 0.716

Table 1. Properties of the 16 synthetic spectra, including the underlying type of symmetric EVDF, the

values of a and b used in Eq. 14, and the corresponding values of the electron drift velocity, effective

temperature, heat flux, and excess kurtosis. For all cases, the electron density was 1017 m~3. Also shown
are the detection systems that were necessary to accurately analyze the spectra and the number of super-
Gaussians required to describe the spectra. For the Kappa distributions, the value of k is denoted.

system C but has 1.5 times the spectral range of
system A. Detection system E has the same
rejection region, instrument function, and
spectral resolution as system C, but has the same
spectral range as system B, and detection system
F has twice the spectral range of detection system
E and is the same otherwise.

Next, since or is constant between the
generation of the synthetic spectra and the
application of the Bayesian methodology, o was
set to 1 in the implementation of the
methodology. An incident wavelength of 532 nm,
a scattering angle of 90°, and a calibration
constant of C = 0.5 are also assumed. From Egs.
1-3, the synthetic ILTS spectra for a given
synthetic EVDF is then constructed. The last step
to generate the realistic ILTS spectra is to add

Gaussian noise to the spectra, which is done with
an SNR of 20 decibels. These SNR and noise
profiles are representative of real ILTS
measurements on low-temperature plasmas.
Spectra 9 and 14 are shown in Figs. 7 and 8 to
show how the drift velocity changes where the
rejection region is with respect to the shape of the
spectrum.

Lastly, to evaluate the Bayesian inference
methodology, an example prior distribution for
the LRS calibration constant needs to be defined.
The example prior distribution used in this work
is a normal distribution centered at C = 0.5 with
a standard deviation of 0.025. The standard
deviation is chosen to represent the 10%
uncertainty in the Raman scattering cross section
of N, that typically dominates the uncertainty in
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Figure 8. Synthetic ILTS spectrum of spectrum
14 on detection system B and an SNR of 20.
Also shown is the corresponding synthetic
spectrum with no noise and no rejection region.

the calibration constant obtained from LRS. In
terms of processing time on a standard laptop, if
using the sum of four super-Gaussians with the
high spectral resolution of detection system D,
analysis of a single spectrum takes around 15
minutes, and it takes around 3 minutes for the
sum of two super-Gaussians with detection
system B.

3. Results and Discussion

In this section, the Bayesian inference
method is evaluated on the synthetic spectra
shown in Section 2.3 regarding the method’s
accuracy and precision. The evaluation primarily
focuses on the method’s accuracy and precision
of inferences of the heat flux and excess kurtosis.
It is found that the methodology performs better
on certain spectra, and this section also compares
the proposed method to a simplified method that
treats the EVDFs as sums of Gaussians. The
method is considered to have adequate accuracy
when the 95% HDIs of the first five moments of
the EVDF contain the true values listed in Table
1. An important general finding is that for all the
spectra considered, the proposed method is
adequately accurate for inferences of the electron
density, drift velocity, and heat flux. In addition,

because the heat flux and excess kurtosis are
deviations from Maxwellian EVDFs and thus
have true values at or close to zero, it is not
always appropriate to assess the method’s
precision with relative uncertainty. Instead of
focusing on relative uncertainty when the inferred
values are close to zero, the analysis will relate
the bounds of the 95% HDI to the minimum
detectable values of the heat flux and excess
kurtosis with ILTS.

3.1.Evaluation of the Proposed Method

At an SNR of 20, the minimum detectable
values of the electron heat flux and excess
kurtosis can be approximated by the results in
Table 2 of the analysis on spectra 1 and 4,
respectively. From the 95% HDI of the excess
kurtosis for spectrum 1, the minimum detectable
excess kurtosis at 20 SNR is approximately +
0.07. From the 95% HDI of the heat flux for
spectrum 4, the minimum detectable excess
kurtosis at 20 SNR is approximately + 0.04
W/cm?. In general, it is more useful to consider
the minimum detectable skewness, which in this
case would be + 0.006. Additionally, whenever
the true value of a property is 0 or less than the
minimum detectable value, it is found that the
95% HDI includes 0. The analysis can then
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Figure 9. Inferred EVDF from spectrum 6 using
the presented method. Also shown is the
corresponding exact EVDEF.
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# ne (101 m™) u, (km/s) T, (eV) qe (MW/mm?) 104,

1 9.8+0.9/-0.6 1.2+84/-7 6.96 +0.18/-0.13 0 -0.46 +0.75/-0.70
2 99+08/-0.6 25+7.8/-17.17 7.00 +0.15/-0.09 489 +1.35 0.74+0.80/-0.68
3 10.0+0.9/-0.7 -3.1+88/-9.6 6.78 +0.27/-0.14 18.18 +3.89/-3.06 10.19+1.82/-1.30
4 9.9+ 0.7 -1.6+6.4/-59 7.06 £ 0.10 -0.01+0.42/-0.35 -5.26+0.34/-0.38
5 103+0.5/-09 -3.1+6.0/-6.8 7.01 +0.07/-0.10 7.11+1.06/-0.83 -497+0.33/-0.25
6 98+09/-0.6 24+9.1/-95 6.96+0.19/-0.13 30.34+4.47/-3.12 6.60+1.17/-0.92
7 10.1+03/-0.6 14+49/-41 6.87 +0.12/-0.11 -0.19 £ 0.50 2.12+0.76 / - 0.64
8 99+08/-0.7 27+73/-6.6 6.92+0.13/-0.12 3.85+1.02/-1.15 1.84 +0.80 /- 0.90
9 99+06/-0.5 -85+104/-103 6.88+0.32/-021 11.37+4.68/-3.26 14.09+3.27/-2.19
10 10.1+04/-0.6 29+49/-438 7.04+0.10/-0.09 0.15+0.56/-0.32 1.10+0.47/-0.36
11 10.0 £ 0.6 -24+55/-59 7.06+0.12/-0.15 -0.38+0.60/-0.78 1.534+0.91/-0.71
12 10.0 £ 0.6 -45+50/-5.1 6.74+0.16/-0.14 -0.16 +0.58 /- 0.68 4.21+1.16/-1.11
13 98+08/-06 39+12.6/-15.7 248+0.6/-0.5 0.54+7.74/-11.62 293+1.63/-0.94
14 98+06/-04 401 +10/-12 6.81+0.22/-0.15 1423+437/-595 12.29+1.94/-1.29
15 9.7+08/-04 -03+33/-25 1.02 ++ 0.02 1.83+0.26/-0.18 5.79+1.42/-0.90
16 99+09/-07 -08+12.6/-13.7 11.0+ 0.3 61.93 +10.60/-7.78 6.93+1.28/-1.20

Table 2. Inferred moments of the EVDF from the synthetic spectra using the presented Bayesian inference
method. Inferences are presented as the mode of the posterior distributions and uncertainty bounds based
on the 95% HDI of the posterior distributions. Values are bolded when the true value in Table 1 is not

within the 95% HDI.

consider the accuracy and precision of the
proposed method for distributions with
magnitudes of heat flux or excess kurtosis above
these minimum values.

Regarding the accuracy of the proposed
method on skewed Maxwellians, Table 2 shows
that the proposed method achieves adequate
accuracy for all properties, and Table 3 shows that
the proposed method can achieve a relative error
of electron heat flux measurements of less than
11%. In addition, when the true value of the
excess kurtosis is above the minimum detectable
value, as in spectrum 3, the method achieves a
relative error of the excess kurtosis of 15.2%.
This demonstrates that if the true values of the
excess kurtosis and heat flux are above the
minimum detectable values for a given SNR, then
ILTS can accurately infer the excess kurtosis and
heat flux for skewed Maxwellians. In terms of the
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Figure 10. Inferred EVDF from spectrum 15
using the presented method. Also shown is the
corresponding exact EVDF.
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Figure 11. Inferred EVDF from spectrum 6 using
the presented method. Also shown is the
corresponding exact EVDF. Y-axis is plotted on a
log scale to show the tails of the EVDFs.

Maxwellian EVDFs increases, as shown in Table
4. Relative uncertainties for the electron heat flux
are between 15% and 30%, and when the excess
kurtosis is above the minimum detectable value,
the relative uncertainty is around 15%.

As for the accuracy of the proposed method
on Druyvesteyn distributions and their skewed
counterparts, Table 2 shows that the proposed
method achieves adequate accuracy for all
properties. From Table 3, the relative errors in
heat flux and excess kurtosis are all below 10%
when T, =7 eV. From Table 4, all relative
uncertainties are below 20%, with the excess
kurtosis having relative uncertainties below 10%
when the heat flux is low and T, =7 eV.
Additionally, the electron temperatures of spectra
15 and 16 represent approximate lower and upper
limits of electron temperature, respectively, at
which the corresponding shape of the EVDF can
be accurately analyzed with the proposed method
with detection system D. The increased relative
error and relative uncertainty in the excess
kurtosis for spectrum 15 are caused by the
increased effect of the rejection region. The
increased effect of the rejection region can also
be visualized in the inferred EVDFs in Figs. 9 and
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Figure 12. Inferred EVDF from spectrum 4 using
the presented method. Also shown is the
corresponding exact EVDF.

10 and is seen to decrease the accuracy of the
inferred EVDF both within and outside the
rejection region. In this case, the lower limit for
the electron temperature corresponded to when
one of the super-Gaussians reached the lower
limit of Av; of 420 km/s. While the analysis of
spectrum 16 has a similar accuracy and precision
as that on spectrum 6, at even higher electron
temperatures, inaccuracies and imprecision are
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Figure 13. Inferred EVDF from spectrum 4 using
the presented method. Also shown is the
corresponding exact EVDF. Y-axis is plotted on a
log scale to show the tails of the EVDFs.
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Relative error in

Relative error in

# 9e (%) A (%)
2 6.9 64.4
3 10.6 152
4 - 1.1
5 9.7 2.9
6 7.1 7.8
7 - 36.3
8 4.5 51.5
9 21.5 10.5
10 - 6.8
11 - 3.16
12 - 43.8
13 - 12.0
14 1.73 22.0
15 0 19.1
16 3.1 3.2

Table 3. Relative errors of the heat flux and
excess kurtosis from the presented method for all
the spectra with either a nonzero true heat flux or
true excess kurtosis. When the true value of the
heat flux is zero, the relative error is not shown.
Relative error is based on the mode of the
posterior distribution with respect to the true
value.

caused by a smaller proportion of the EVDF
being included in the analysis.

In general, it is found that the inferences of
electron heat flux and excess kurtosis are more
precise for Druyvesteyn EVDFs and their skewed
counterparts than for skewed Maxwellian
EVDFs. This is likely due to the depleted tails of
Druyvesteyn distributions. The tails of the
EVDFs are generally below the noise floor of
ILTS spectra, so with depleted tails, more
information is located above the noise floor.
Since EVDFs with depleted tails are more
common in low-temperature plasmas, this
indicates that ILTS is well suited to infer the

13

Relative uncertainty in

Relative

# 7. (%) uncertzzizt)y in A,
2 +27.6 +108.1/-91.9
3 +21.4/-16.8 +17.9/-12.8
4 - +6.5/-72
5 +14.9/-11.7 +6.6/-5.0
6 +14.7/-10.3 +17.7/-139
7 - +35.8/-30.2
8 +26.5/-29.9 +43.5/-48.9
9 +41.2/-28.7 +232/-155
10 - +42.7/-32.7
11 - +40.5/-53.6
12 - 27.6/-26.4
13 - +55.6/-32.1
14 +30.7/-41.8 +15.8/-10.5
15 +142/-9.8 +24.5/-15.5
16 +17.1/-12.6 +185/-173

Table 4. Relative uncertainties of the heat flux and
excess kurtosis from the presented method for all the
spectra with either a nonzero true heat flux or true
excess kurtosis. When the true value of the heat flux
is zero, the relative uncertainty is not shown.
Relative error is based on the uncertainty bounds
from the 95% HDI of the posterior relative to the
mode of the posterior distribution.

higher-order moments of EVDFs in low-
temperature plasmas. However, non-Maxwellian
EVDFs in low-temperature plasma can have
sudden depletion of the tails after the threshold
energy of either an inelastic collision [47] or of
the sheath potential [4, 8], and if this threshold
energy occurs below the noise floor of ILTS, then
the proposed method would not enable ILTS to
detect such EVDFs. In addition, for the case of
spectrum 6, the accuracy of the inferred EVDF
below the noise floor is surprisingly high, as
shown in Fig. 11, which is further evidence that
Druyvesteyn EVDFs and their skewed
counterparts contain a significant amount of
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information above the noise floor. Lastly, the
accurate inference for Druyvesteyn distributions
is also seen in Figs. 12 and 13.

Similar reasoning explains the effects of the
spectral resolution, since if the rejection region
takes up a larger proportion of the spectrum, then
less information is available, which decreases the
accuracy and precision. For a constant detection
system, the effect of the rejection region becomes
greater at lower electron temperatures, such that
each type of EVDF has a lower limit for the
electron temperature at which a detection system
can be used to accurately analyze that type of
distribution. In addition, because of the finite
bandwidth of VBG-NFs, each type of EVDF has
a fundamental lower limit for the electron
temperature for which ILTS can be accurately
used to analyze that type of EVDE. The
Maxwellian and Druyvesteyn distributions
analyzed in this work are above these lower
limits.

The effect of relative spectral range has
competing effects. For a given detection system,
as electron temperature increases, the tails of the
EVDF are truncated, which decreases the amount
of information in the spectrum, but the effect of
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Figure 14. Inferred EVDF from spectrum 11
using the presented method. Also shown is the
corresponding exact EVDF.

14

the rejection region decreases, which increases
the amount of information available. However,
for sufficiently high electron temperatures, the
increased benefit of a smaller rejection region is
negligible, and the increasing effect of truncated
tails will produce inaccurate and imprecise
inferences. This may explain why spectrum 14
does not experience a noticeable decrease in
accuracy or precision with respect to spectrum 6,
even though some information above the noise
floor in the tails of the EVDF of spectrum 16 is
lost when using detection system D.

Regarding its efficacy on  Kappa
distributions, the method does not accurately
capture the electron temperature or the excess
kurtosis if the skewness and temperature are too
low, as in spectra 7, 8, and 12. Even for these
inaccurate cases, the proposed method is
adequately accurate for the inferences of the
electron density, drift velocity, and heat flux. The
relative error in the excess kurtosis decreases to
around 10% for sufficiently high heat flux,
sufficiently low excess kurtosis, and higher
electron temperature, as shown by spectra 9, 10,
11, and 13, respectively. The inferred EVDF for
spectrum 11 is shown in Figs. 14 and 15, as it is
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Figure 15. Inferred EVDF from spectrum 11
using the presented method. Also shown is the
corresponding exact EVDF. Y-axis is plotted on a
log scale to show the tails of the EVDFs.
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16. Inferred ILTS spectrum from
spectrum 9 using the presented method. Also
shown are the corresponding exact spectrum and
the corresponding synthetic noisy spectrum on
detection system D with an SNR of 20.
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Figure 17. Inferred ILTS spectrum from spectrum
14 using the presented method. Also shown are
the corresponding exact spectrum and the
corresponding  synthetic noisy spectrum on
detection system E with an SNR of 20.

C AT aCEED  acEEL)  acEEd)
2 0.12,1.28,-0.10,1.85  -0.09, 1.91,0.12, 2.42 - -

3 0.16,1.03,-0.29, 1.58  0.00,0.50,0.36,2.66  -0.51,2.60, 0.30,2.93 -

4 023,167,001,248  -0.48,2.20,-0.04,5.23 - -

5 0.00,2.06,0.10,3.71  -0.06,1.21,-0.20, 2.17 - -

6 -0.14,1.04,-0.16,3.41  -0.31,1.45,-0.63,3.58  -0.33,0.60,0.28,3.14  -0.44,2.34, 0.58,3.23
9 0.03,0.57,0.32,2.61  0.00,0.92,-0.41,1.58  -0.46,2.39, 0.26, 2.46 -

10 027,156,0.01,1.96  -1.20,1.22,-0.26,3.89 - -

11 0.25,1.53,-0.01,1.85  -0.90, 1.52, 0.11,3.77 - -

Table 5. Means of the posterior distributions of the super-Gaussian model parameters, 6, as defined
in Section 2.1. Results were obtained from the synthetic spectra using the proposed method. For

readability, 6 is split into 91, 52, 53, and 54, corresponding to the individual super-Gaussians. As

displayed in the table, éi = [loglo(Ai), Avy, vp bi]. 6 is only presented for spectra corresponding to

unique non-Maxwellian EVDFs and for spectra for which the proposed method is adequately accurate.

15
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# n, (10" m3) u, (km/s) T, (eV) qe (mMW/mm?) 104,

1 10.0+0.7/-0.8 0.7+8.3/-8.6 6.98+0.13/-0.12 0 0

2 10.0 £ 0.7 -39+79/-65 7.03+0.09/-0.10 435+1.27/-1.14 0.72+0.39/-0.38
3 102+4+1.0/-08 -3.6+109/-9.5 7.19+0.22/-0.19 20.15+497/-391 16.83+1.10/-0.91
4 99+1.0/-0.7 37+84/-69 7.30+0.07/-0.08 -0.17+1.14/-1.06 -4.17+0.22/-0.27
5 10.0 £ 0.7 -09+78/-0.7 7.30 +0.07 /- 0.08 9.05+1.37/-1.07 -3.42+0.22/-0.19
6 96+06/-05 49+9.0/-9.3 7.02+0.15/-0.14 31.86+2.84/-423 7.58+0.78/-1.13
7 99+0.8/-0.7 03+7.0/-8.6 6.94+0.15/-0.13 -0.7+1.33/-1.50 2.74+0.96/-0.74
8 98+1.0/-0.6 42+79/-78 6.92+0.14/-0.12  538+229/-1.37 2.90+0.92/-0,77
9 10.0+0.8/-0.6 -14+11.6/-10.5 7.37 £ 0.21 12.51+4.08/-392 18.26+1.23/-1.14
10 99+0.7/-0.5 -7.7+63/-52 6.97+0.08/-0.10 -0.25+0.44/-0.49 0.42+0.35/-0.24
11 10.0 £ 0.6 45+51/-6.0 6.92+0.08/-0.10 0.10 +0.46 /- 0.47 0.51+0.39/-0.21
12 994+09/-0.6 -73+80/-78 6.82+0.19/-0.14 -0.64+127/-1.84 4.75+1.44/-1.00
13 10.0+0.6/-0.8 25+11.3/-9.7 25.1+03/-04 3.04 +8.15/-8.35 3.48+0.83/-0.76
14 10.0+0.6/-0.7 389+11/-9 7.04 +£0.19 9.42 +4.17/-2.74 16.69 +1.25/-1.03
15 9.9+ 0.6 1.1 £2.7 1.09 + 0.02 2.07+0.23/-0.16 8.69 + 0.60 / - 0.50
16 9.8+ 0.6 22+144/-11.5 11.2+0.3/-0.2 68.46+9.49/-7.85 8.51+0.95/-1.05

Table 6. Inferred moments of the EVDF from the synthetic spectra using the simplified Bayesian inference
method. Inferences are presented as the mode of the posterior distributions and uncertainty bounds based
on the 95% HDI of the posterior distributions. Values are bolded when the true value in Table 1 is not

within the 95% HDI.

the spectrum with the lowest relative uncertainty
for the excess kurtosis among all the EVDFs with
Kappa distributions. However, even for the
accurate cases of spectra 9, 10, 11, and 13, the
relative uncertainties for the heat flux and excess
kurtosis are higher than for the analysis of
Maxwellian  distributions. ~Additionally, the
proposed method is not adequately accurate for
spectrum 14 for inferences of electron
temperature and excess kurtosis; this inaccuracy
is due to the drift velocity, which effectively shifts
the location of the rejection region along the
EVDF, suggesting that different locations of the
EVDF contain more important information than
others. The importance of the location of the
rejection region is also relevant to the effect of
poorly subtracted emission spectra when
collecting ILTS data, as poorly subtracted
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emission spectra would lead to additional
rejection regions.

Figures 16 and 17 compare the inferred ILTS
spectra from spectra 9 and 14, respectively, to
their corresponding synthetic spectra. The
inferred spectra are reconstructed from the
inferred EVDFs and the instrument function.
Interestingly, the inferred spectrum for spectrum
9 deviates from the exact spectrum within the
rejection region, which is not the case for
spectrum 14. Although the difference between
synthetic spectra 9 and 14 is predominantly the
location of the rejection region relative to the
shape of the EVDF, the reduced accuracy of the
inference on spectrum 14 is not caused by
inaccuracies within the rejection region. Instead,
the location of the rejection region in spectrum 14
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results in reduced accuracy of the inferred
spectrum in the tails of the spectrum.

The worse performance of the proposed
method on Kappa distributions is for the same
reason that the method performs well for
Druyvesteyn distributions. For distributions with
positive excess kurtosis, more information is in
the tails below the noise floor. This explains the
improved performance of the method for
sufficiently high heat flux, sufficiently low excess
kurtosis, and higher electron temperature. If the
skewness is high enough, as in spectrum 9, then
there is sufficient information above the noise
floor for the proposed method to be adequately
accurate. For higher electron temperatures,
assuming that the same proportion of the EVDF
is analyzed but with a constant width of the
rejection region, then the effect of the rejection
region will reduce, and the same amount
information is lost in the tails. The adequate
accuracy of the analysis of spectrum 13 indicates
that a smaller rejection region can improve the
performance of the proposed method on Kappa
distributions. However, in general, careful
consideration of the detection system and
expected SNR, drift velocity, and temperature is
necessary to determine whether ILTS can be used
to accurately analyze a specific EVDF with low
skewness and positive excess kurtosis. In fact,
similar careful consideration of the detection
system and acquisition strategy is necessary to
accurately measure higher-order moments from
EVDFs with negative excess kurtosis. This can be
seen in Table 1, since several spectra required
analysis with reduced rejection regions, such as
detection systems D, E, and F.

The parameters of the inferred super-
Gaussians are shown in Table 5. Unsurprisingly,
all the super-Gaussian components inferred for
the Druyvesteyn distribution and its skewed
counterparts have depleted tails. On the other
hand, there is always one super-Gaussian
component with depleted tails for the inferences

17

on the Kappa distribution and its skewed
counterparts. For the high skew cases of spectra
3, 6, and 9, the super-Gaussian component with
the lowest density has the highest temperature by
more than factor of 2.

3.2. Comparison with Simplified Method

For each spectrum, the simplified
methodology was implemented with the same
detection system and number of distributions as
the proposed methodology, but each EVDF was
the sum of Gaussians instead of super-Gaussians.
As shown in Table 6, the simplified method has
inadequate accuracy for the excess kurtosis for
more spectra than the proposed method, and in
some cases, inaccuracies are introduced for the
drift velocities and heat flux. In particular, the
simplified method is not adequately accurate for
Druyvesteyn EVDFs and their skewed
counterparts and for the high-skew EVDFs of
spectra 3 and 9. Meanwhile, spectra 7 and 8 are
the only spectra for which the proposed method
does not have adequate accuracy but for which
the simplified method does have adequate
accuracy. Because the simplified method is only
better than the proposed method for a limited
range of Kappa distributions, the simplified
method is not a general improvement to the
proposed method for Kappa distributions. In
addition, the simplified method generally has
smaller uncertainty bounds than the proposed
method, which can be explained by the fact that
the proposed method considers more shapes of
the EVDF.

Due to the inaccuracies of the simplified
method, it is useful to consider the general impact
of inaccuracies in the inferences of the heat flux
and excess kurtosis. For the joint posterior
distribution shown in Fig. 18, the drift velocity is
most strongly correlated with the heat flux, and
the temperature is most strongly correlated with
the excess kurtosis. These correlations quantify
how accounting for non-Maxwellian features is
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Figure 18. Marginal and joint posterior distributions of the electron density, drift velocity, temperature, heat
flux and excess kurtosis. In the marginal distributions, the 95% HDIs are denoted with the vertical dashed
lines. In the joint distributions, the Mahalanobis contours containing the most probable 10% and 95% of
the distribution are shown. Posterior distributions are from the proposed method on spectrum 6.

necessary to accurately infer the drift velocity and
temperature. This is observed in Table 2, as the
proposed methodology is adequately accurate for
both the heat flux and drift velocity for all cases,
but whenever the proposed method is inadequate
for the excess kurtosis, the relative error in the
temperature inference increases.

4. Conclusion

In conclusion, this study has found that the
presented Bayesian inference method can
accurately expand the capabilities of ILTS to
direct measurements of the electron heat flux and
excess kurtosis. Specifically, for all the synthetic
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spectra considered, the presented method is
adequately accurate for inferences of the heat flux
with uncertainties ranging from around 40% to as
low as around 10%. Notably, the method can
accurately infer the excess kurtosis of
Druyvesteyn distributions with an uncertainty of
around 5%. In addition, the presented method
performs favorably compared to a simplified
method that only uses Gaussian distributions
instead of super-Gaussians. However, the
presented method does not accurately infer the
excess kurtosis of certain Kappa distributions. To
accurately infer the excess kurtosis of a wide
variety of EVDFs with positive excess kurtosis
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and low skewness, high SNR measurements are
needed in order that a significant portion of the
tails are above the noise floor.

Future work should include implementing
this method with actual measurements, which
would enable high-fidelity validation of
simulations that account for non-Maxwellian
EVDFs. To do such measurements, it is necessary
to carefully select the detection system and
acquisition strategy to mitigate the effects of
spectral resolution and spectral range. In addition,
inferences of higher-order moments will be more
affected by improper subtraction of stray light
sources when constructing ILTS spectra. Lastly,
although the synthetic spectra were constructed to
replicate ILTS measurements in low-temperature
plasmas, the presented method can be applied to

ILTS measurements in high-temperature plasmas.
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