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Facility effects are known to alter Hall thruster performance between ground and space.
Furthermore, discharge current oscillations are linked to impacting both the lifetime and
thrust of Hall thrusters. In this work, we present a machine learning–based control framework
designed for nonlinear, time-varying systems with hysteresis that can mitigate breathing mode
oscillations and adapt to environmental changes. Unlike reactive approaches such as PID
control, our method is predictive and flexible across a range of control objectives. Specifically,
we employ echo state networks (ESNs), a class of recurrent neural networks well-suited for
time-series prediction. To train and test the model, we apply a diverse set of discharge voltage
perturbations—including sine, triangle, square, ramp, chirp, noise, pseudorandom binary
sequence, and PID—on a 6-kW H6 Hall thruster operated at 400 V and 4.3 A, and measure the
resulting discharge current as a part of a process known as system identification. Using extended
convergent cross mapping, we confirm causal relationships between the applied perturbations
and discharge current response. The ESN achieves 90% prediction accuracy on previously
unseen time-series data based on variance. We then integrate the ESN into a nonlinear model
predictive control (NMPC) framework, creating a machine learning controller, to compute
optimal control trajectories that suppress discharge oscillations. NMPC simulations indicate
that discharge current oscillations can be reduced by over 90%. Finally, we outline a deployment
strategy in which the learned control policy is embedded as a multilayer perceptron on a
field-programmable gate array, enabling real-time experimental implementation. The machine
learning controller has the potential to be applicable to other operating points by following a
standard procedure of system identification and control optimization.

I. Nomenclature

HPEPL = High Power Electric Propul-
sion Laboratory

ODE = Ordinary Differential Equa-
tion

HLS = High Level Synthesis PDE = Partial Differential Equation
PPU = Power Processing Unit HET = Hall Effect Thruster
VTF = Vacuum Test Facility MFC = Mass Flow Controller
BM = Breathing Mode FFT = Fast Fourier Transform
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STFT = Short-Time Fourier Transform CWT = Continuous Wavelet Trans-
form

EMD = Empirical Mode Decomposi-
tion

ML = Machine Learning

NN = Neural Network RNN = Recurrent Neural Network
ESN = Echo State Network RMSE = Root Mean Square Deviation
NRMSE = Normalized Root Mean

Square Error
MLP = Multilayer Perceptron

PID = Proportional-Integral-
Derivative

DC = Direct Current

AC = Alternating Current ILC = Iterative Learning Control
NMPC = Nonlinear Model Predictive

Control
IPOPT = Interior Point Optimizer

SQP = Sequential Quadratic Pro-
gramming

AM = Amplitude Modulation

FM = Frequency Modulation PM = Phase Modulation
eCCM = Extended Convergent Cross

Mapping
EKF = Extended Kalman Filter

ADC = Analog-to-Digital Converter FPGA = Field-Programmable Gate Ar-
ray

DAC = Digital-to-Analog Converter GPU = Graphics Processing Unit
CPU = Central Processing Unit LSTM = Long Short-Term Memory
RLS = Recursive Least Squares 𝑉𝑃 = PPU Voltage
RMS = Root Mean Square PP = Peak-to-Peak
0D = Zero-Dimensional EMI = Electromagnetic Interference
IVB = Current, Voltage, Magnetic

Field
RLC = Resistor, Inductor, Capacitor

LTI = Linear Time-Invariant LTV = Linear Time-Varying
NLTI = Nonlinear Time-Invariant NLTV = Nonlinear Time-Varying
PRBS = Pseudorandom Binary Se-

quence
SNR = Signal-to-Noise Ratio

𝑅𝐹 = Filter Resistance 𝐶𝐹 = Filter Capacitance
𝑅𝐻 = Harness Resistance 𝐿𝐻 = Harness Capacitance
𝐿𝐻 = Harness Inductance 𝐼𝐷 = Discharge Current
𝑉𝑀 = Modulation Voltage 𝑒 = Electron Charge
𝐴𝐶 = Channel Cross-Sectional Area 𝑀𝑖 = Ion Mass
𝑅Δ = Channel Width 𝜁𝑖𝑜𝑛 = Ionization Rate Coefficient
𝐿𝑐ℎ = Channel Length 𝑁𝑖𝑛𝑡 = Injected Neutral Number Den-

sity at Anode
𝜀𝑤 = Electron Energy Loss to Wall 𝜈𝑤 = Electron Wall Collision Fre-

quency
𝜒 = Ionization Cost 𝜀𝑖𝑜𝑛 = Ionization Energy Loss
𝑈𝑖,𝑤 = Ion Acoustic Speed 𝐸 = Electric Field
𝑉𝐶𝐹 = Filter Capacitor Voltage 𝐼𝐿𝐻 = Harness Inductor Current
𝑁𝑖 = Ion Number Density 𝑁𝑛 = Neutral Number Density
𝑈𝑖 = Ion Velocity 𝑈𝑒 = Electron Velocity
𝑇𝑒 = Electron Temperature ℎ̂(𝑛) = Intermediate Reservoir Neu-

ron Activations
ℎ(𝑛) = Reservoir Neuron Activations 𝑥(𝑛) = Training Input Signal
𝑦(𝑛) = Output 𝑊𝑖𝑛 = Input Weight Matrix
𝑊𝑜𝑢𝑡 = Output Weight Matrix 𝑊𝑟𝑒𝑐 = Recurrent Weight Matrix
𝑊 𝑓 𝑏 = Feedback Connections 𝑏𝑟𝑒𝑐 = Recurrent Bias
𝑏𝑜𝑢𝑡 = Output Bias 𝛼 = Leak Rate
𝑌𝑡𝑎𝑟𝑔𝑒𝑡 = Target Output 𝛽 = Regularization Term
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𝐼 = Identity Matrix 𝑌𝑝𝑟𝑒𝑑 = Predicted Output
𝐾𝑃 = Proportional Gain 𝐾𝐼 = Integral Gain
𝐾𝐷 = Derivative Gain 𝑉𝐴𝐶 = AC Voltage Component
𝐼𝐴𝐶 = AC Current Component SSF = Single-Step Forced

II. Introduction
A HET is an electrostatic plasma device that produces thrust via the acceleration of ions [1, 2]. Developed in

the 1960s, HETs have become increasingly adopted for satellite propulsion due to their mass efficiency compared to
chemical propulsion systems [2]. To expand their use in satellites and deep space missions, ongoing advancements
aim to improve thrust, specific impulse, efficiency, and thruster lifetime. These developments rely on ground-based
testing in dedicated vacuum facilities designed to replicate the space environment as closely as possible. However,
space conditions cannot be fully reproduced on the ground, resulting in deviations in measured performance and plasma
behavior [3].

Vacuum chambers introduce what are referred to as “facility effects” that change thruster performance on the ground
compared to that in space [3–6]. Facility effects occur because ground facility pumping systems cannot reach the
low-pressure levels as in space [7]. Additionally, the vacuum chambers are made out of metal, creating current paths
that otherwise do not exist in the space environment [3–6]. Lastly, sputtering, originating from the chamber walls back
onto and into the thruster, may interfere with the discharge and affect HET lifetime [3]. Understanding and mitigating
such facility effects is therefore essential for accurate HET performance characterization.

Discharge current oscillations are another critical factor influencing HET operation [8, 9]. These oscillations
originate from plasma instabilities, with the dominant mode being the BM [10]. The BM arises from predator–prey
interactions between neutrals and electrons, producing variations in plasma density within the discharge chamber
[10]. It can be described using conservation equations for mass, momentum, and energy, which enable modeling of
the discharge plasma as an electrical load [11]. Typically occurring in the tens of kHz range, BM oscillations can
drive current amplitudes exceeding 100% of the mean [10]. Such oscillatory dynamics degrade thruster performance,
contribute to wall erosion, and generate EMI, motivating recent efforts to develop active control strategies [12–15].

HETs are nonlinear, spatially-varying, time-varying, and causal systems that exhibit hysteresis [16, 17]. Plasma
diagnostics show spatial dependence, while spatially-averaged data from electrical diagnostics reveal time-varying and
hysteretic nature. Nonlinearity of the discharge plasma has been demonstrated by using small-signal linearization to
show that discharge impedance is constant for small perturbations but begins to change for larger perturbations [18]. The
discharge plasma is, however, LTV and not LTI for smaller perturbations, which can be observed when not using a time
constant much longer than the breathing mode period that averages out the time-varying behavior. Analytical techniques
for analyzing nonlinear, spatially-varying, and time-varying behavior require the use of algorithms beyond the FFT,
which applies only for signals produced by LTI systems. The STFT and CWT may be used for LTV systems, while the
EMD and similar methods, such as the IMFogram, may be used for NLTI and NLTV systems [16]. It is important to
understand the dynamics of the HET so that applicable control strategies can be applied to handle the dynamics.

While IVB maps can identify operating points where oscillations are lower in amplitude, it is sometimes still
necessary to seek to reduce the amplitude even further, and it may even be the case where there is a desire to operate
a thruster at a more oscillatory point for performance reasons [19]. A simple case of HET control involves tuning
an RLC network placed in the discharge circuit that can be used to reduce oscillations [20, 21]. However, the RLC
network cannot be changed at a fast rate and is static. Mass flow rate control can also only be accomplished at slow time
scales [22]. Magnetic field control is difficult to achieve in real-time due to the resulting back EMF from changing
magnetic fields at a fast rate, and thus it is better to tune to optimal values without or with slow variations [20]. Past
research has explored perturbing discharge voltage with PID control and phase synchronization of discharge voltage and
discharge current [12, 13, 23]. Due to limitations in using PID for nonlinear time-varying loads such as a HET, some
researchers have investigated using ML to control a HET, such as ILC [22, 24]. Existing discharge plasma models are
not fully predictive, whereas ML has the potential to outperform these models using data-driven and physics-informed
approaches. ML control could potentially leverage various HET power supplies simultaneously to control the HET
[22, 25]. Past research has also explored using ESNs for time series prediction of discharge current [17].

Active control of a HET is desired as it can shape oscillations to reduce wall erosion, reduce EMI, protect the PPU,
improve stability, and improve thrust [12–15]. We propose a ML control approach that can be used to make intelligent
PPUs. This approach can allow HETs to operate optimally by allowing them to either reduce oscillations or phase
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synchronize voltage and current to increase thrust. The approach operates faster than the BM oscillation timescale and
uses an NMPC controller on a NN that could potentially update over time. NMPC allows for predictive rather than
reactive control and provides flexibility for control objectives as it classically involves solving a nonlinear optimization
problem given a dynamics model and constraints. With increasing data availability, NNs can better generalize the
dynamics of the HET discharge plasma and aid in computing better control trajectories [26]. ML control could also
potentially predict and prevent mode-hopping behavior in HETs, where the HET switches between lower-thrust plume
modes and higher-thrust jet modes [27].

III. Control Problem and Approach
We start by modeling the discharge circuit of the HET and identifying the control problem. We then discuss our

active control approach by investigating time and frequency domain behavior that we seek to change. Lastly, we discuss
three different ways to control a HET that we argue are best achieved using ML rather than PID. The work presented
here is broken into control simulations on a 0D ionization model, experimentation to obtain a HET dataset including
PID control, training, testing, and tuning of an ESN using the dataset, PID and NMPC control simulations using the
ESN, and deployment onto an FPGA for use in an experiment to demonstrate the ML controller for oscillation reduction.

The circuit in Figure 1 consists of a DC voltage source (the PPU output), a RC low-pass discharge filter to protect
the PPU from oscillations, a modulation voltage, a harness transmission line model (the source of discharge voltage
oscillations via time-varying current flowing through LH), and the load represented by a variable current source [28].
The following control model in Equation 1 shows that there is coupling between discharge current, modulation voltage,
and discharge voltage that requires modeling. For minimizing oscillations, the control objective is to find a trajectory
where VM opposes the natural oscillations in VD. However, the choice of control voltage is not as simple as negating
the discharge voltage, as the discharge voltage changes with the applied control voltage.

Fig. 1 Discharge Circuit Diagram

𝑉𝐶𝐹 − 𝐿𝐻

𝑑𝐼𝐷

𝑑𝑡
−𝑉𝑀 −𝑉𝐷 = 0 (1)

Figure 2 shows the FFT of the discharge current of the H9 9-kW HET operated at 600 V, 15 A. The FFT at this
operating condition reveals a BM peak and harmonics. It is important to note that it is not the case that the breathing
mode and harmonics are solely responsible for the oscillations; the sidebands of the peaks also are signals and contribute
to the oscillatory behavior. Control does not involve just addressing the peaks, so it is necessary to develop a controller
that can handle all oscillations depicted in the FFT. The rationale for control involves active noise cancellation, where
waves at various frequencies are canceled by introducing waves that are 180 degrees out of phase, leading to destructive
interference [29]. However, in a nonlinear load such as a HET, perturbations at a particular frequency can lead to
responses at other frequencies due to frequency coupling, which need to be accounted for.
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Fig. 2 Discharge Current FFT

Figure 3 shows the philosophy of active control, where the discharge current waveform is shaped through repeated
applications of control voltages throughout the BM period. The proper choice of control voltages at the right points
in time could allow for oscillation reduction. There are fundamental physical limits on the frequency of the control
voltages, due to the behavior of ions, electrons, and neutrals.

Fig. 3 Waveform Shaping of HET Discharge Current Oscillations

Table 1 shows three possible control modes that could be used for a HET. The first is to perturb the discharge voltage
to control voltage and current oscillations to reduce wall erosion, reduce EMI, improve stability, and protect the PPU.
The second is to perturb the discharge voltage to phase align the discharge voltage and discharge current to increase
thrust. The third involves perturbing the discharge voltage to convert discharge current oscillations into AM/FM/PM, as
the discharge plasma emits EM waves, which could potentially be used for communications.
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Table 1 Table of Control Modes

Control Mode Description
Voltage and Current Oscillation
Control Perturb voltage to control the voltage and current oscillations

Maximum Thrust Achieved by phase aligning the voltage and current oscillations
AM/FM/PM Achieved by applying appropriate voltage perturbations that

result in AM/FM/PM of discharge current

From an electrical point of view, the approach extends selecting specific RLC components for passive power factor
correction to active power factor correction by introducing voltage perturbations. This approach is a drive circuit for
HETs. Figure 4 shows that the phase shift between discharge voltage and discharge current dictates the real and reactive
power. For maximum thrust and real power, the voltage and current signals should be phase-aligned, minimizing reactive
power and maximizing power factor. A 90-degree phase shift results in minimal real power input and, thus, minimal
thrust. Rather than minimizing oscillations, it may even be advantageous to increase oscillations while synchronizing
discharge voltage and discharge current, or even reduce oscillations while achieving synchronization. It is important to
note that while the DC settings of the thruster largely impact thruster performance, the AC behavior also plays a role,
and shaping AC behavior can lead to different outcomes in terms of performance.

Fig. 4 Power Triangle

In this work, we choose to focus on oscillation reduction before looking into improving thrust or demonstrating
AM/FM/PM. The nonlinear optimal control problem for reducing the RMS of the discharge current oscillations is shown
as follows, where 𝑥𝑘 represents HET states at time k, 𝑢𝑘 represents the control voltage at time k, f(𝑥𝑘 , 𝑢𝑘) represents
HET dynamics at HET states and control voltage at time k, g(𝑥𝑘 , 𝑢𝑘) represents the discharge current output at HET
states and control voltage at time k, N is the number of steps looking forward, j represents particular times during the N
steps looking forward, 𝜇 is the mean discharge current, and 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are minimum and maximum bounds on the
control voltage:
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Dynamics: 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘), 𝑖𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘)

Objective: min
{𝑢𝑘 ,...,𝑢𝑘+𝑁−1 }

𝑁−1∑︁
𝑗=0

(
𝑖𝑘+ 𝑗 − 𝜇

)2

︸              ︷︷              ︸
minimize RMS of oscillations

where 𝜇 =
1
𝑁

𝑁−1∑︁
𝑗=0

𝑖𝑘+ 𝑗

Subject to:
𝑥𝑘+ 𝑗+1 = 𝑓 (𝑥𝑘+ 𝑗 , 𝑢𝑘+ 𝑗 ), 𝑗 = 0, . . . , 𝑁 − 1,
𝑢min ≤ 𝑢𝑘+ 𝑗 ≤ 𝑢max, 𝑗 = 0, . . . , 𝑁 − 1,
𝑥𝑘 given.

IV. Methods
Section A discusses how we perform system identification on a HET using voltage perturbations. Section B discusses

the ML model we selected for representing the relationship between control voltage and discharge current based on the
perturbation response data collected during system identification. Section C explains the experimental setup that we use
for collecting perturbation response data and control. Section D explains the PID control experiment that we conducted
on the HET load that also is used for creating the ML model based on perturbation responses from applying the PID
control. Lastly, Section E discusses how we use the ML model as a part of an NMPC framework in a simulation where
optimal control voltages are determined that minimize discharge current oscillations.

A. System Identification
To control the HET discharge plasma, we must first determine a model for HET discharge plasma dynamics through

a process known as system identification, which we can then use to determine control trajectories that allow us to
achieve our control objectives. We use an Agilent 33522A function generator as the signal source, an AE Techron 9110
switch-mode power amplifier, and two AE Techron T2000 transformers in parallel for isolation, each with primary to
secondary turns ratio of two to one, to interface with the discharge circuit for load perturbation, shown in Figure 5. The
power amplifier and transformer each have a bandwidth of 250 kHz. Each transformer is rated for 500 W, allowing up to
1 kW to be added to the plasma. The power amplifier is responsible for amplifying the voltage of the input signal while
also increasing its current. DC offset cancellation is included since DC will saturate the transformer, the difference
amplifier is included to boost the signal to the highest allowable level of the power amplifier, and the bandpass filter
is used to limit the injection signal frequency between the cutoff of the discharge filter and the power amplifier and
transformer bandwidth. This setup effectively places a variable voltage source in series with the HET. The system can
handle the plasma inrush current and fault conditions. PPU output voltage changes are limited by the discharge filter, so
the injection path needs to be placed after the filter to enable perturbation and control at higher frequencies and fast time
scales. However, for control at slow time scales, as in the case of the ILC approach, the PPU output voltage can be
changed without attenuation from the discharge filter [22]. Control at faster time scales has added complexity but has
the potential to be more effective.
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Fig. 5 Load Characterization Experiment Diagram

The perturbations we add to the discharge to assist with system identification of the discharge plasma are summarized
in Table 2. These include sine waves for basic characterization of the plasma response, square waves to capture nonlinear
responses, triangle waves which capture elements of both sine and square waves, ramp as a blend between triangle
and square waves, chirps for characterizing time-varying effects, combinations of sinusoids to capture coupling, noise
to capture stochastic effects, and lastly PRBS. These perturbations are applied at various amplitudes up to 2.5 V,
frequencies between 7 kHz and 19 kHz, and phases. This process can be applied to any HET operating point to learn
the dynamics and create a ML controller. The system identification approach is still applicable for operating points that
exhibit mode-hopping behavior.

Table 2 Load Characterization Test Matrix

Waveform Perturbation Type (Various
Amplitudes, Frequencies, and Phases)
Sine
Triangle
Square
Ramp
Chirp
Discharge Voltage (Combination of Sinusoids)
Noise
PRBS
PID

B. ML Model
The main motivation for constructing an ML model is because HET discharge plasma models are not predictive

enough to allow for control on their own. ML allows us to use a data-driven approach and additionally a physics-informed
approach if desired to model HET discharge plasma dynamics. ML models are intended to predict the deterministic parts
of the discharge plasma while attempting to predict the random contributions from plasma turbulence. In constructing a
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ML model of the discharge plasma, it is necessary to measure the underlying states governing the plasma, specifically
their response to perturbations. These include electrical states in the discharge circuit using the perturbation approach
discussed previously along with plasma states. Plasma diagnostics are used to measure the plasma states shown in
Table 3 below. However, it is difficult to measure the plasma states in real-time in the discharge. Non-intrusive plasma
diagnostics would have to be used so that the plasma is not perturbed from an additional boundary condition.

Table 3 Time Scales of Various Plasma Diagnostics

Plasma Diagnostic Invasive? Plasma Parameter Time Scale
Faraday Probe Yes 𝑈𝑖 , 𝑁𝑖 Microseconds
Laser Induced Fluorescence No 𝑈𝑖 , 𝑁𝑖 Not Real-Time
Triple Langmuir Probe Yes 𝑇𝑒, 𝑁𝑖 Microseconds
Laser Thomson Scattering No 𝑇𝑒,𝑈𝑒, 𝑁𝑖 Not Real-Time
Optical Emission Spectroscopy No 𝑇𝑒, 𝑁𝑛, 𝑁𝑖 Not Real-Time

It is also difficult to use a 3D plasma discharge model governed by PDEs and take 3D measurements for plasma
state estimation using an EKF due to the complexity and time involved in solving the PDE system and obtaining an
adequate dataset. 3D control would also require placing electrodes in various spatial locations around the discharge
channel. Controlling these electrodes would pose a computational challenge. A more feasible approach would be to
use a 0D model, discussed in the Appendix, and take time-varying and spatially-averaged electrical measurements.
Physics-informed ML could involve learning the residuals between measurements and predictions from the physics
model, and the prediction of these residuals could then be used for control. These residuals would be the unmodeled
terms in the 0D ionization model, primarily anomalous electron transport. Others have looked into symbolic regression
for determining the physical representation of unmodeled terms not captured in physical models for the discharge plasma,
but this procedure is very computationally and time-intensive, thus NNs may be the better option for control applications
[30]. However, tuning the EKF can be cumbersome and requires that the plasma state estimate be correct in order to
achieve a proper predictive model. Thus, we opt not to use state estimation and stick with just electrical measurements.
Furthermore, we use only the mapping between the control voltage and the discharge current for simplicity, though the
other electrical states, such as discharge voltage, harness inductor current, and discharge filter capacitor voltage may
contribute additional information that may further improve prediction accuracy. A ML model was built using an ESN,
which is a form of reservoir computing and a type of RNN that excels at predicting nonlinear and nonstationary time
series [31, 32]. The ESN consists of an input layer, a reservoir layer that uses random, fixed recurrent connections that
are never trained, and an output layer that is trained using linear regression, and is represented by Equations 2-7 as
follows:

ℎ̂(𝑛) = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛𝑥(𝑛) +𝑊𝑟𝑒𝑐ℎ(𝑛 − 1) +𝑊 𝑓 𝑏𝑦(𝑛 − 1) + 𝑏𝑟𝑒𝑐) (2)

ℎ(𝑛) = (1 − 𝛼)𝑥(𝑛 − 1) + 𝛼ℎ̂(𝑛) (3)

𝑦(𝑛) = 𝑊𝑜𝑢𝑡ℎ(𝑛) + 𝑏𝑜𝑢𝑡 (4)

Ridge regression through Tikhonov regularization can be used to determine𝑊𝑜𝑢𝑡 :

𝑌𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑊𝑜𝑢𝑡𝑋 (5)

𝑊𝑜𝑢𝑡 = 𝑌𝑡𝑎𝑟𝑔𝑒𝑡𝑋
𝑇 (𝑋𝑋𝑇 + 𝛽𝐼)−1 (6)

Prediction is accomplished using𝑊𝑇
𝑜𝑢𝑡 :

𝑌𝑝𝑟𝑒𝑑 = 𝑋𝑊𝑇
𝑜𝑢𝑡 (7)

The mapping between control voltage and discharge current can be used to determine sequences of control voltages
that can minimize discharge current oscillations, shown in Figure 6. Measurements of discharge current can be directly
fed into the ESN to make control voltage predictions. We pick ESNs over LSTMs as they can be trained, tested, and
tuned much faster on CPUs without the need for GPUs while maintaining comparable prediction accuracy. LSTMs have
the potential to be better at learning temporal dependencies, but are more complex than ESNs [31]. ESN stability can
also be controlled more easily than MLPs and LSTMs [33].
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Fig. 6 ESN Model of Control Voltage and Discharge Current

Given the diverse set of perturbations applied to create the training dataset, the ESN can better learn signal from
noise since the noise is smoothened. A lock-in amplifier could also potentially be used to improve the SNR of the
measurements. Due to the presence of noise, the true discharge current measurements actually look different from what
one may observe on an oscilloscope. It is important to control signal rather than noise, and the effectiveness of the
control is reduced when more noise is present. Higher power operating points at higher voltages and currents tend to
have higher amplitude components with higher SNR, which further improves control performance, also taking into
account that higher power generally leads to more erosion and larger oscillations that can be synchronized for increased
thrust [15].

C. Experimental
Experimentation to obtain a perturbation dataset for developing ML control was performed in VTF-2 at the Georgia

Institute of Technology High-Power Electric Propulsion Laboratory. An photograph of this facility is shown in Figure
7b. VTF-2 is a stainless-steel chamber measuring 9.2 m in length and 4.9 m in diameter. VTF-2 is evacuated to a
rough vacuum using a 495 CFM rotary-vane pump and a 3800 CFM blower. High vacuum is achieved using ten liquid
nitrogen-cooled CVI TMI re-entrant cryopumps at a pumping speed of 350,000 l/s on xenon. The cryopump shrouds
are fed using the Stirling Cryogenics SPC-8 RL special closed-loop nitrogen liquefaction system [34].

For this study, we used the H6 HET, shown in Figure 7a, a 6-kW class HET developed in partnership between the
NASA Jet Propulsion Laboratory, the University of Michigan, and the Air Force Research Laboratory [1]. The H6
employs a centrally mounted LaB6 cathode. The thruster body and cathode were isolated from facility ground and were
electrically floating.

(a) H6 HET. (b) VTF-2.

Fig. 7 Test Article and Facility

The H6 discharge plasma was controlled using a Magna-Power TS800-24 power supply. All other thruster components
were powered using TDK-Lambda GEN80-42 power supplies. A TDK-Lambda GEN600-2.6 and GEN60-25 were used
for the cathode keeper and heater, respectively. To protect against HET oscillations, the discharge supply was connected
to a RC low-pass discharge filter consisting of a series 0.533-Ohm resistor and a shunt 100-µF capacitor to attenuate
discharge current oscillations that are greater than 3 kHz in frequency.

High-purity (99.999%) krypton propellant was supplied to the anode and cathode lines using stainless-steel lines
metered with MKS GE50A MFCs. The MFCs were calibrated by measuring the flow upstream of the thruster with
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a MesaLabs DryCal 800-10 volumetric flow meter. The uncertainty for anode and cathode line flow is 2% and 5%,
respectively.

The power supply voltage, anode and cathode flow rate, and the magnetic field were kept constant during testing.
The H6 thruster was operated at one 400 V, 4.3 A thruster operating point, as shown in Table 4. Upon ignition, the H6
thruster was run for three hours until its oscillations became steady after outgassing. The base facility pressure was 10
nTorr, and the facility pressure during operation was 2 µTorr.

Table 4 H6 Thruster Operating Conditions (Krypton)

Discharge
Voltage (V)

Discharge
Current (A)

Anode Flow Rate
(sccm, mg/s)

Cathode Flow Rate
(sccm, mg/s)

Inner Coil
Current (A)

Outer Coil
Current (A)

Breathing Mode
Frequency (kHz)

400 4.3 65, 4.05 6.5, 0.405 2.15 1.96 13

The AC component of the discharge current of the H6 thruster was recorded using a Pearson 110A current monitor
placed inside VTF-2, and the control voltage was measured using a BNC cable connected to a HDO6104 Teledyne
LeCroy oscilloscope. The uncertainty and bandwidth of the current probe are ±1% and 20 MHz; for the oscilloscope,
they are ±0.5% full scale and 1 GHz. The oscilloscope has 12 bits of resolution with a selected 25 MS/s sampling rate
and is used over an interval of 10 ms for 250,000 samples in all. MATLAB instrument control toolbox with USB and
Ethernet for remote desktop of the oscilloscopes were used for semi-automated data collection. HET measurements
were collected after it was observed that the peak-to-peak current values had stopped changing within ±1% variation,
taking approximately two hours after ignition due to outgassing.

Systematic and random errors were quantified as part of this study’s error analysis. Systematic errors are introduced
by voltage and current probes, along with the oscilloscope. Other errors and nonidealities arise from function generator,
microcontroller, ADC, FPGA, DAC, power amplifier, transformer, and harness settings.

D. PID Control Experiment
As a part of determining perturbation responses, we conducted PID control of the HET discharge plasma. The

premise behind PID is that the discharge current oscillations can be reduced by minimizing the error between current
measurements and a reference. This is achieved by supplying the error into the PID network, which computes the
control voltages needed to accomplish the minimization of the error, represented in Equation 8.

𝑉𝐴𝐶 = 𝐾𝑃 𝐼𝐴𝐶 + 𝐾𝐼

∫ 𝑡

0
𝐼𝐴𝐶 𝑑𝑡 + 𝐾𝐷

𝑑𝐼𝐴𝐶

𝑑𝑡
(8)

The control scheme works by applying voltage at 10 microsecond steps while taking into account propagation and
computation delays, shown in Figure 8. For the control approach to be effective, propagation delays between the current
probe and the DAC along with computation delays must be minimized.

Fig. 8 Setpoint Timing
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PID control was achieved using the Texas Instruments C2000 F28379D microcontroller. The C2000 embedded
coder target in Simulink was used, allowing for rapid programming of the microcontroller using various blocks that
are used to control it, in addition to the standard PID block. The embedded coder provides functionality to set the
control loop speed. The microcontroller has a built-in ADC to sample the discharge current and a DAC to output the
appropriate control voltage after PID computation, ranging between 0 and 3.3 V. A BNC switcher is used to protect the
microcontroller from the initial inrush voltage signal from the Pearson current probe used to measure the discharge
current of the HET. Resistive dividers are used to set appropriate voltages, and operational amplifiers are used for
buffering, scaling, and level shifting the measurements to fit within the input range of the ADC.

Figure 9 shows the experimental setup for PID control, where the Texas Instruments C2000 microcontroller replaces
the function generator from the system identification experiment. We treat all components after the DAC combined
to be the plant. The plant notably includes the RC discharge filter, which contains a 50 𝜇s time delay. The controller
computes the control voltages that take into account this delay so that the discharge current can be controlled as desired.

Fig. 9 Experimental setup for PID Control of the HET load

E. ESN NMPC Control Simulation
The ML controller we seek to develop consists of an ESN and an NMPC controller [32]. Figure 10 shows the

basic architecture of the ML controller, where discharge current values are read and a corresponding control voltage is
identified to limit the discharge current oscillations. The ML model in the controller can also be updated over time to
close the loop. To solve the nonlinear optimal control problem using NMPC, we use the IPOPT nonlinear optimization
approach to determine optimal control trajectories over a horizon that minimize discharge current oscillations [35]. We
must use a nonlinear solver for the ESN since the ESN is nonlinear. IPOPT uses an interior point method with KKT,
exploits sparsity, and can be coupled with CasADi for exact derivatives [36]. IPOPT is slower than acados, another
nonlinear optimization solver, but is more accurate as it better handles stiff dynamics and constraints. IPOPT is also a
better choice than SQP, since SQP also struggles with stiff dynamics.
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Fig. 10 ML Control Feedback Diagram

V. Results and Discussion
In our work, we seek to compare the performance of NMPC-based ML control approach with PID. We present

PID simulation results using a 0D model as the plant, though we are unable to use NMPC on the 0D model due to the
stiffness of the model. We present results and discuss oscillation reduction achieved using PID control versus without
using PID control. We show that the perturbations actually cause changes in the discharge current using the eCCM
algorithm. We show plasma state estimate oscillations using an extended Kalman filter and discuss the resulting plasma
physics from PID control beyond electrical changes. We then show the results from ESN training and testing that
demonstrate that ESNs can represent discharge current dynamics of a HET. We lastly show that PID and NMPC can
control the discharge current oscillations in simulation using the ESN.

A. 0D Model PID Simulation Results
To start the control work, we ran simulations in MATLAB using the 0D model with the ode23tb stiff solver. Figure

11 shows the discharge current with oscillations of 20 𝐴𝑃𝑃 . The breathing mode frequency is 19.7 kHz.

Fig. 11 0D Model Discharge Current Waveform

We then ran PID simulations on the 0D model. Figure 12a shows the steady state applied control voltage ranging
between -0.5 V and 0.25 V and Figure 12b shows the resulting steady state discharge current with 2.5 𝐴𝑃𝑃 , a 87.5%
reduction. The discharge current is phase-shifted from the control voltage by 180 degrees. Figures 12c and 12d show
the transients of the control voltage being applied along with the resulting discharge current. The control voltage ranges
between -2.5 V and 0.5 V until it settles to steady state. A larger control voltage swing is needed to reduce the discharge
current oscillation.
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(a) Modulation Voltage Steady State (b) Modulation Voltage Transition

(c) Discharge Current Steady State (d) Discharge Current Transition

Fig. 12 0D Model PID Control Simulation Results

B. PID Experiment Results
Table 5 shows the 𝐾𝑝 and 𝐾𝑑 values that were used during PID control of the HET discharge plasma. The integral

coefficient was not used to keep the control simple and prevent integral windup. It can be observed that increasing the
𝐾𝑝 value improves oscillation reduction, whereas increasing the 𝐾𝑑 value makes the discharge voltage and discharge
current more oscillatory. A 𝐾𝑝 value of 1×10−1 and a 𝐾𝑑 value of 1×10−9 minimizes the discharge current oscillations
at 0.578 Arms, a 8.89% reduction, while also reducing the discharge voltage oscillations by 1.19% to 6.819 𝑉𝑅𝑀𝑆 . At
worst, a 𝐾𝑝 value of 5 × 10−2 and a 𝐾𝑑 value of 5 × 10−3 maximizes the discharge current oscillations at 0.745 𝐴𝑅𝑀𝑆 ,
a 17.42% increases, while also increasing the discharge voltage oscillations by 58.02% to 10.908 𝑉𝑅𝑀𝑆 .
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Table 5 PID Characterization

K𝑝 K𝑑 Discharge
Current
Oscillation RMS
(No Control) (A)

Discharge
Current
Oscillation
RMS (PID
Control) (A)

Discharge
Current RMS
Change (%)

Discharge
Voltage
Oscillation RMS
(No Control) (V)

Discharge
Voltage
Oscillation
RMS (PID
Control) (V)

Discharge
Voltage
RMS
Change (%)

5 × 10−2 1 × 10−9 0.635 ± 0.034 0.635 ± 0.064 0.5 ± 11.4 6.902 ± 0.193 6.676 ± 0.059 -3.24 ± 2.84
5 × 10−2 1 × 10−6 0.635 ± 0.034 0.622 ± 0.031 -1.81 ± 5.8 6.902 ± 0.193 6.695 ± 0.063 -2.94 ± 3.05
5 × 10−2 5 × 10−3 0.635 ± 0.034 0.743 ± 0.07 17.42 ± 1.66 6.902 ± 0.193 10.9047 ± 0.292 58.02 ± 4.37
1 × 10−1 1 × 10−9 0.635 ± 0.034 0.5783 ± 0.03 -8.89 ± 5.45 6.902 ± 0.193 6.819 ± 0.142 -1.19 ± 2.21

Figure 13 shows the control voltages determined by the PID controller based on discharge current measurements at
a 𝐾𝑝 value of 1 × 10−1 and a 𝐾𝑑 value of 1 × 10−9, and hereafter we discuss PID performance at these PID gains. It
shows a series of different levels of voltage at each 10 𝜇s period, representing the 100 kHz loop speed. It is evident that
the controller is making control voltage choices during each period of the breathing mode.

Due to the two parallel transformers used in the voltage perturbation approach, the control current required is the
same as the discharge current. Reducing the discharge current oscillations reduces the required control current. We can
compute the input power required to achieve a discharge current oscillation reduction of approximately 9% by taking the
product of the RMS of the injected control voltage and the RMS of the discharge current. By scaling the control voltage
by the gain introduced by the perturbation pathway, the RMS voltage at the output of the power amplifier is 12.221 V,
while the RMS control current is 0.578 A, yielding a RMS control power of 7.064 W. Out of the 1.72 kW of DC power
supplied to the HET, only 0.411% is needed to reduce discharge current oscillations by 9%, through proper selection of
perturbation amplitudes and phases at each frequency.

Fig. 13 PID Control Voltage

Determining correlation and causality between two signals in a nonlinear and time-varying system, such as a HET,
can be accomplished using eCCM, a technique based on Takens’ Theorem, and using shadow manifolds [37]. Shadow
manifolds are the result of projecting a system’s signals onto coordinate axes that are time-lagged. The basis is that if a
signal causes another signal, then the signal is recorded in the other signal. To prove that the control voltage (X) is
actually acting on the discharge current (Y), we ran an eCCM simulation and obtained the result shown in Figure 14.
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This plot shows three identifiable pairs of peaks. The orange peaks represent the discharge current causing the control
voltage while the blue peaks represent the control voltage causing the discharge current. Since the first and highest
orange curve peak occurs at positive time shifts, this means that discharge current strongly causes the control voltage.
This makes sense as the PID algorithm directly computes setpoints based on discharge current measurements. There is a
second pair of peaks after the first pair, where the order of the peaks is reversed, and where the second blue peak occurs
at positive time shifts. This indicates that there is a weaker causality between control voltage and discharge current.
Similarly, the third pair of peaks shows that discharge current causes control voltage. In summary, this scenario occurs
where oscillation reduction is smaller.

Fig. 14 eCCM Correlation and Causation of Control Voltage (X) and Discharge Current (Y)

EKF state estimation was used to estimate the plasma states using the discharge current measurements obtained from
the PID experiment. EKF uses the 0D model presented in the Appendix and linearizes the nonlinear dynamics while
predicting and correcting using the measurements [11]. In Figures 15-17, we can see that the ion number density, ion
velocity, and electron temperature have major peaks and troughs that are in phase, whereas the neutral number density
and electron velocity have peaks and troughs that are 180 degrees out of phase. This finding makes sense physically, as
ion and neutral populations reach their maximum and minimum at the same time by way of the predator-prey interaction.
The electron temperature also contributes to ionization; thus, it makes sense that the ion number density reaches a
maximum when the electron temperature reaches a maximum. The ion velocity is also consistent with the ion number
density, with a small ion transit time. The electron velocity and neutral number density are in phase since, as the neutral
number density increases, more electrons are needed for ionization.
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(a) Ion Number Density Estimates (b) Neutral Number Density Estimates

Fig. 15 PID EKF Plasma State Estimates (Ion and Neutral Number Densities)

(a) Electron Temperature Estimates (b) Ion Velocity Estimates

Fig. 16 PID EKF Plasma State Estimates (Electron Temperature and Ion Velocity)

Fig. 17 PID EKF Plasma State Estimate for Electron Velocity
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Table 6 shows the RMS of the plasma parameters with and without PID control. The reduced discharge current
oscillations from using PID result in lower plasma parameter oscillations. The ion number density oscillations decrease
by 7.48%, however, the electron velocity oscillations increase by 4.44%. It is possible PID excited higher frequency
electron dynamics based on the fact that electrons respond almost immediately to perturbations.

Table 6 PID Plasma State Estimates

Plasma
Parameter

Oscillation RMS
(No Control)

Oscillation RMS
(PID)

Oscillation RMS
(% Change)

𝑁𝑖 1.176 × 1016 ± 8.124 × 1012 m−3 1.088 × 1016 ± 7.438 × 1012 m−3 -7.48 ± 0.07
𝑁𝑛 2.185 × 1017 ± 2.427 × 1013 m−3 2.038 × 1017 ± 2.194 × 1013 m−3 -6.74 ± 0.12
𝑇𝑒 0.5473 ± 9.599 × 10−5 eV 0.508 ± 8.692 × 10−5 eV -7.17 ± 1.95
𝑈𝑖 429.206 ± 0.514 m/s 413.5 ± 0.484 m/s -3.66 ± 0.16
𝑈𝑒 2.074 × 103 ± 0.145 m/s 2.166 × 103 ± 0.136 m/s 4.44 ± 0.41

C. ESN Training and Testing Results
Using a dataset of 180 perturbation conditions consisting of control voltage and discharge current time series, we

trained and tested an ESN using a single-step approach and k-fold validation with a Huber loss function. Single-step uses
ground-truth data from measurements for predicting the next step, known as teacher-forced training, whereas multi-step
predicts over several steps using measurements from one step. We choose single-step over multi-step for simplicity
with shorter horizons in NMPC to reduce compounding error. We allow the ESN to washout before training where
we eliminate the influence of the ESN’s initial random state, allowing it to warm up and settle. Optuna, a Bayesian
optimization framework, was used to tune the hyperparameters of the ESN within a search range, shown in Table 7,
which includes the spectral radius, leak rate, sparsity, ridge alpha, reservoir size, Eta0, input scale, and feedback scale
[38]. The training, testing, and tuning process took approximately one hour to complete.

Table 7 ESN Hyperparameters

Hyperparameter Description Search Range Optimal Value
Reservoir Size Number of neurons in the reservoir. Larger reservoirs

capture temporal dependencies and nonlinearity better but if
too large, then increase in computation time and risk of
overfitting

[512, 1024] 960 (High)

Spectral Radius Largest absolute eigenvalue of internal reservoir weight
matrix. Controls temporal dependencies, memory strength,
and stability

[0.35, 0.95] 0.877 (High)

Leak Rate Update speed of reservoir states. Governs how fast reservoir
neurons update relative to input signal

[0.1, 0.8] 0.724 (High)

Sparsity Reservoir connectivity. Fraction of zero connections in the
reservoir weight matrix

[0.988, 0.997] 0.991 (High)

Ridge Alpha Output regularization. For ridge regression when training
output weight matrix, smaller value means better fitting of
data

[1 × 10−4, 5 × 10−2] 3.64 × 10−4 (Low)

Eta0 Initial learning rate. The step size for iterative solvers when
updating weights. Larger value means faster convergence

[8 × 10−4, 4 × 10−3] 2.77 × 10−3 (High)

Input Scale Input weight scaling. Scaling factor for weights from inputs
to reservoir neurons. Lower value prevents input saturation

[0.3, 5.0] 1.358 (Low)

Feedback Scale Feedback and memory strength. Scaling factor for feedback
weights connecting outputs back to reservoir

[0.3, 3.0] 2.5 (High)

The 𝑅2 value was 0.902, suggesting a strong fit by variance to the dataset, while the RMSE was 0.1917, also
suggesting lower error. However, the NRMSE was 0.3122, an acceptable result but suggests that the ESN predicts the
dynamics well overall, but doesn’t fully capture the amplitude of the time series. This may indicate a possible limitation
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in modeling HET time series data due to its NLTV and hysteretic nature. In Figure 18, we observe excellent agreement
in predicting the discharge current when no control is applied for the 8-ms duration signal, with slight under prediction
on some peaks.

Fig. 18 Time Series Validation

D. ESN Model PID Simulation Results
In Figure 19, we see how PID affects the discharge current in an ESN simulation at a 𝐾𝑝 value of 5 and a 𝐾𝑑 value of

0.01, taking a few seconds to complete. We use the history of discharge current at no control to initialize the ESN, then
apply PID on the ESN to minimize discharge current oscillations. We can see that the oscillations are reduced within 60
microseconds of applying controls. Figure 19d shows the chosen control values at each 10 microsecond step. The PP of
the discharge current oscillations reduces from 3 𝐴𝑃𝑃 to 0.2 𝐴𝑃𝑃 , which is a 93.333% reduction. The control voltage
ranges from -0.3 V to 0.6 V, with a close to zero mean since the injection path only takes AC signals. Accounting for
gains from the amplifiers between the DAC output to the secondaries of the transformers, the perturbation voltage that
would arrive at the HET ranges between -5.625 V and 11.25 V, which is 16.875 𝑉𝑃𝑃 . Since the controlled oscillations
do not match between PID experiment and PID simulation of an ESN, it is likely that the ESN has not yet fully learned
the HET dynamics and that more learning iterations are needed.
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(a) Discharge Current History (b) Controlled Discharge Current

(c) Control History (d) Controls

Fig. 19 PID Control of Discharge Plasma ESN

E. ESN Model ML Control Simulation Results
In Figure 20, we see how NMPC affects the discharge current in an ESN simulation, which takes under a minute to

complete. We use history of the discharge current at no control to initialize the ESN, and apply NMPC on the ESN to
minimize discharge current oscillations. We can see that the oscillations are reduced within 30 𝜇s of applying controls.
Figure 20d shows the chosen control values at each 10 𝜇s step. The PP of the discharge current oscillations reduces from
3 𝐴𝑃𝑃 to 0.2 𝐴𝑃𝑃 , which is a 93.333% reduction. The control voltage ranges from -0.3 V to 0.15 V, with zero mean,
since the injection path only takes AC signals. Accounting for gains from the amplifiers between the DAC output to the
secondaries of the transformers, the perturbation voltage that would arrive at the HET ranges between -5.625 V and
2.813 V, which is 8.438 𝑉𝑃𝑃 . These results show that NMPC on an ESN can be done in simulation and could potentially
be used in an experiment. The performance of PID and NMPC in terms of oscillation reduction is comparable, but
NMPC requires a lower PP voltage to achieve the same result. NMPC control also acts faster than PID. The results
likely will differ in an experiment as simulations do not take into account hardware delays, while repeated updating of
the ESN model may reveal superior performance with ML control compared to PID control.
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(a) Discharge Current History (b) Controlled Discharge Current

(c) Control History (d) Controls

Fig. 20 NMPC Control of Discharge Plasma ESN

VI. ML Control Experiment
Figure 21 shows the ML control experiment setup, where an FPGA is now used rather than a microcontroller for

active control. We plan to use the ZCU104 FPGA, the THS1206A ADC, and the DC2459A DAC. These devices are
sufficient to enable real-time control using neural networks [39]. The hardware additions could be placed within the
PPU itself, but one question to be answered is whether or not the benefits of ML control outweigh the design changes. It
is also possible to investigate how ML control affects the plasma using the 0D model along with state estimation using
an EKF. Thrust measurements can also be done when phase synchronizing voltage and current oscillations using the
ML controller.
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Fig. 21 Experimental setup for ML control of the HET load

The experimental flow, outlined in Figure 22, is to take the NMPC simulation results and train, test, and tune an
MLP control policy using PyTorch and an NVIDIA GeForce RTX 3050 GPU on various trajectories produced by the
NMPC simulation that generalize control decisions by initializing the discharge current with various time histories
[33, 40]. This process is a form of imitation learning. We use the MLP as it runs fast on an FPGA unlike RNNs,
containing only an input layer, hidden layers, and an output layer. We then program the MLP onto the FPGA using
hls4ml, a HLS library for converting Python code into FPGA code, and Vitis and Vivado for microsecond inferencing
[39]. The final step is to test the FPGA controller with adaptive RLS tuning of the weights of the outer layer of the
MLP to account for variations at the millisecond time scale, along with appropriate safety limits [41, 42]. Safety limits
would include understanding the resulting additional discharge current from applied control voltages and adding these
contributions at every perturbation frequency of the total control voltage as an upper bound to define a constraint in the
NMPC controller. The safety limits are tied to the impedance of the plasma in the small-signal case, as the control
voltage is related to the discharge voltage, and is a transfer function that has control implications, where the plasma may
be treated as LTV with small perturbations. ML control is still advantageous since some operating points may require
nonlinear control to be applied with larger perturbations to better minimize oscillations. The time-varying nature of the
load and the control flexibility that ML control brings are also important reasons for its use. Upon collecting time series
data with the controller on, the process flow can be repeated by updating the ESN, potentially online, in under a minute
to then update the MLP control policy, resulting in iterative improvement of the controller with subsequent testing.
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Fig. 22 ML Control Testing Process

Analysis would include plasma state estimates with and without ML control, specifically looking into the mean,
RMS, and PP of the state estimates. The transient upon activating the control, steady-state, and turning off the control
will be analyzed. Breathing mode frequency and amplitude changes will be investigated as well. Lastly, the power draw
from using the ML controller will be determined.

VII. Conclusion
The research described here attempts to create an intelligent power supply that can control HETs in an optimal

manner. We demonstrate the ability to control the 0D model using PID. We show that perturbations, in the form of
PID control, reduce oscillations and impact the discharge current using the eCCM algorithm, revealing reciprocal
causality. We use the EKF to determine how plasma parameters change with and without PID control. We demonstrate
the effectiveness of ESNs to predict time-resolved discharge current data from a HET by using a diverse dataset of
perturbation response data, yielding 90% prediction accuracy by variance. We show that a real-time ML control
approach can potentially minimize oscillations through simulation, reducing oscillations by more than 90%. The next
step is to demonstrate the controller through an experiment with the hope of demonstrating reduced discharge current
oscillations. The ML controller has the potential to work at other operating points, as the same procedure of learning
dynamics and computing controls does not change. With advances in rad-hardened GPU and FPGA technology, it has
become increasingly possible to employ ML in space missions.

Appendix
The 0D ionization model is derived using the conservation of mass, momentum, and energy equations. It is

governed by the following system of eight nonlinear ODEs, which consists of five plasma states (𝑁𝑖 , 𝑁𝑛, 𝑇𝑒,𝑈𝑖 ,𝑈𝑒),
three electrical states (𝑉𝐶𝐹 , 𝐼𝐿𝐻 , 𝑉𝐷), one output (𝐼𝐷), and one control (𝑉𝑀 ). It is based on Troyetsky’s 0D model, but
contains additions with respect to the RLC harness model and voltage control [11]:

𝑑𝑁𝑖

𝑑𝑡
= −𝑁𝑖𝑈𝑖

𝐿𝑐ℎ
−

2𝑁𝑖𝑈𝑖 ,𝑤

𝑅Δ
+ 𝑁𝑖𝑁𝑛𝜁𝑖𝑜𝑛 (9)

𝑑𝑁𝑛

𝑑𝑡
= − (𝑁𝑛 − 𝑁𝑖𝑛𝑡 )𝑈𝑛

𝐿𝑐ℎ
− 𝑁𝑖𝑁𝑛𝜁𝑖𝑜𝑛 (10)

𝑑𝑇𝑒

𝑑𝑡
=

2
3𝑁𝑖

(−𝑁𝑖𝑈𝑒𝐸 − 𝑁𝑖𝜀𝑤𝜈𝑤 − 𝑁𝑖𝑁𝑛𝜁𝑖𝑜𝑛𝜒𝜀𝑖𝑜𝑛 −
3
2
𝑇𝑒
𝑑𝑁𝑖

𝑑𝑡
− 5

2
𝑁𝑖𝑈𝑒𝑇𝑒

𝐿𝑐ℎ
) (11)

𝑑𝑈𝑖

𝑑𝑡
=
𝑒𝐸

𝑀𝑖

+
2𝑈𝑖 ,𝑤𝑈𝑖

𝑅Δ
+ 𝑁𝑛𝜁𝑖𝑜𝑛 (𝑈𝑛 −𝑈𝑖) (12)

𝑑𝑈𝑒

𝑑𝑡
= 0 (13)

𝑑𝑉𝐶𝐹

𝑑𝑡
= − 𝐼𝐿𝐻

𝐶𝐹

+ 𝑉𝑃 −𝑉𝐶𝐹

𝑅𝐹𝐶𝐹

(14)
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𝑑𝐼𝐿𝐻

𝑑𝑡
=
𝑉𝐶𝐹 −𝑉𝑀 − 𝑅𝐻 𝐼𝐿𝐻 −𝑉𝐷

𝐿𝐻

(15)

𝑑𝑉𝐷

𝑑𝑡
=
𝐼𝐿𝐻

𝐶𝐻

− 𝑒𝐴𝐶𝑁𝑖 (𝑈𝑖 −𝑈𝑒)
𝐶𝐻

(16)

The discharge current is governed by the following relation that links the plasma and electrical circuit differential
equations:

𝐼𝐷 = 𝑒𝐴𝐶𝑁𝑖 (𝑈𝑖 −𝑈𝑒) (17)
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