

Ambient Atmosphere Ion Thruster (AAIT) Proof-of-Concept Modeling AIAA-2011-XXXX

Scott King, Prof. Mitchell Walker High-Power Electric Propulsion Laboratory Georgia Institute of Technology

Dr. Silvio Chianese Northrop Grumman Aerospace Systems

47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit

Motivation

- Satellites growing more prevalent in military, communications, and science applications
- Satellite lifetime limited by amount of on-board propellant for drag makeup

IROP GRUMMAI

- Design an alternative propulsion system which utilizes in-situ particles (ions)
- Presence of in-situ ions makes a case for using electric propulsion (EP)
- **Goal:** Create tool to estimate on-orbit performance of EP that utilizes in-situ ions

Introduction

- Ambient Atmosphere Ion Thruster (AAIT) utilizes insitu ions to eliminate on-board propellant mass
 - G. Dressler (AIAA-2006-4650)
- Designed for electrostatic acceleration of ambient ions with two biased grids
 - Uses screen grid and accelerator grid to create electric field and accelerate ambient ions
- Use on-board power generation (e.g. solar arrays) to provide power for ion acceleration
- Focus: Predict AAIT performance by integrating thruster mathematical model with atmospheric model
 - Use orbit propagator to output orbit parameters

Electrostatic Thruster Model

- Created a mathematical model that estimates AAIT
 performance with an integrated atmospheric model
- Developed thrust, drag, and power from fundamental equations
- Requires given AAIT parameters:
 - Total grid area
 - Grid transparency
 - Ratio of open grid area to total grid area
 - Acceleration voltage

High-Power Electric Propulsion Lab

HROP GRUMMAI

Model Assumptions

- Fixed spacecraft frame of reference
 - Incoming ion velocity is equal in magnitude but opposite in direction of spacecraft velocity
 - Neglect random thermal motion of ambient particles
 - Ion temperatures of approximately 0.2 eV result in thermal speeds much less than orbital speed
- Uniform particle number densities across grid area and satellite frontal area
- Grid transparency fixed at 90%
 - Assume 10% of all ions and neutrals impact screen grid
 - Neglect optical transparency of ions
- Electrons repelled by screen grid bias

Northrop Grumman

• Development of thrust begins with conservation of momentum in fixed spacecraft reference frame:

$$T = \dot{m}v = \sum_{i} \dot{m}_{i} \left(v_{out,i} - v_{s/c} \right)$$

- Spacecraft velocity, $v_{s/c}$, determined with orbit propagator
 - Reduces computations within performance code
- Ion exit velocity, $v_{out,i}$, determined from energy conservation
 - Assume singly-charged ions (Z=1)

Thrust (continued)

Inserting these relationships into thrust equation:

$$T = \sum_{i} m_{i} n_{i} A_{open} v_{s/c} \left(v_{out,i} - v_{s/c} \right) = \sum_{i} \dot{m}_{i}'' A_{open} \left(v_{out,i} - v_{s/c} \right)$$

- Thrust dependent upon:
 - Mass flux, \dot{m}''_i , term:
 - Particle mass, m_i
 - Ion and electron densities, n_i (from atmospheric model)
 - Spacecraft velocity, $v_{s/c}$ (from orbit propagator)
 - Ion exit velocity, $v_{out,i}$ (from energy conservation)
 - Open grid area, A_{open} (from AAIT design)

IROP GRUMMAN

- Drag is due to neutral, ion, and electron impacts on both the spacecraft and AAIT
- Estimation begins with the classic continuum fluid mechanics equation from momentum conservation:

$$D = \frac{1}{2}\rho v^2 SC_D$$
$$D = D_{s/c} + D_{AAII}$$

- Drag is dependent upon:
 - Drag areas, A_{grid} and $A_{s/c}$ (from AAIT and mission designs)
 - Spacecraft velocity, $v_{s/c}$ (from orbit propagator)
 - Atmospheric density, ρ_{atmo} (from orbit propagator)
 - Ion and electron densities, n_i (from atmospheric model)

- Power required by the AAIT is a sum of two powers:
 - Jet power ions accelerated for thrust
 - Grid power ions striking the screen grid (power loss)
 - Assumes 10% of ions strike the screen grid

$$P_{AAIT} = P_{jet} + P_{grid}$$

- Total AAIT power dependent upon:
 - Voltage applied to grids, V_{screen} and ΔV (from AAIT design)
 - AAIT grid areas, A_{grid} and A_{open} (from AAIT design)
 - Ion and electron densities, n_i (from atmospheric model)
 - Spacecraft velocity, $v_{s/c}$ (from orbit propagator)

AAIT Performance Code Flowchart

Atmospheric Model - IRI

- Use International Reference Ionosphere 2007 (IRI) from NASA as atmospheric model
 - State-of-the-art ionosphere model
 - D. Bilitza, and Reinisch, B., J. Adv. Space Res., 42, #4, pp. 599-609, 2008
- IRI models the ionosphere between 50 and 2,000 km
- IRI enforces quasi-neutrality by calculating ion densities as percentages of the electron density
- Model returns densities for AAIT performance estimation

- O⁺, O₂⁺, N⁺, NO⁺, H⁺, He⁺, and e⁻

- Inputs obtained from orbit propagator and include
 - Time, altitude, latitude, and longitude

Orbit Propagation in STK 9

- Orbit propagation interval is 60 seconds
 - Approximately 90 points in one complete orbit of Earth
 - Over 1 year orbit duration, approximately 550,000 points
 - Allows many data points to average over one full year while retaining orbit fidelity
- Considered circular orbits with no drag (used J2 perturbation propagator)
 - Assuming same altitude during entire orbit duration
 - Useful for first-order analysis without requiring specific knowledge of spacecraft characteristics
- STK outputs data required for IRI
 - Time, altitude, latitude, longitude

High-Power Electric Propulsion Lab

Analysis Parameters

• Vary orbital, spacecraft, and AAIT parameters

	Minimum	Interval	Maximum
Altitude (km)	300	100	1000
Inclination (deg)	0	30	60
	Minimum	Mean	Maximum
Solar Activity Level (Year)	1996	1993	1991
Satellite Frontal Area (m ²)	0.1	1.5	5.0
AAIT Total Grid Area (m ²)	1	5	10
AAIT Acceleration Potential (V)	1000	5000	10000

- Two constants in this analysis
 - Coefficient of drag, C_D : 2.4
 - AAIT grid transparency, $A_{open}/(A_{open}+A_{grid})$: 90%

Transient Performance Verification

- Verify that IRI functions properly within code
 - Expect thrust peak during daylight (increase in ion density)
 - Drag change during these three orbits was less than 1.3%
- Transient modeling ability useful for mission analysis

High-Power Electric Propulsion Lab

NORTHROP GRUMMAN

AAIT Performance Analysis

- Analyze two cases averaged over one full year to identify trends in thrust-to-drag (T/D) and total power
- Case 1 identifies performance trends due to changes in AAIT grid area and acceleration voltage
 - Fixed
 - Circular, equatorial orbit with mean solar activity
 - 1.5 m² satellite frontal area
 - 90% grid transparency
 - Variable
 - Altitude
 - AAIT total grid area
 - AAIT acceleration voltage

HROP GRUMMAN

Results - Thrust (Case 1)

- T/D increases with greater:
 - Total grid area
 - Acceleration voltage
 - Altitude (mainly due to decreasing neutral density)
- T/D first reaches 1 just over 400 km
- Almost every case with T/D greater than 1 by 800 km

Results - Power (Case 1)

- Cases with same numerical (m²-kV) appear very similar, but differ by less than 1%
- Power decreases with:
 - Lower total grid area
 - Lower acceleration voltage
 - Higher altitude
- Power peaks just under 90 W
- Most cases show AAIT power less than 40 W

High-Power Electric Propulsion Lab

AAIT Performance Analysis

- Case 2 identifies performance trends due to changes
 in orbit inclination and solar activity level
 - Fixed
 - Circular orbit
 - 1.5 m² satellite frontal area
 - 5 m² total grid area
 - 5 kV acceleration voltage
 - 90% grid transparency
 - Variable
 - Altitude
 - Orbit inclination
 - Solar activity level

Northrop Grumman

Results - Thrust (Case 2)

- T/D increases with:
 - Lower orbit inclination
 - Higher solar activity
 - Higher altitude (mainly due to decreasing neutral density)
- T/D first reaches 1 just over 400 km
- T/D greater than 1 for every case by 700 km

- Power decreases with:
 - Higher orbit inclination

Aerospace

Higher altitude

Georgia

Tech

- Lower solar activity
- Power peaks just over 40 W
 - Peak in power on this line due to densities from IRI
 - May be consequence of maximum solar year, as minimum and mean years show trends similar to all other cases
- Most cases show AAIT power less than 30 W

Conclusions

- Configurations studied show T/D greater than 1 is possible at orbit altitudes greater than 400 km
- T/D less than 1 may still lengthen satellite missions
 - Analysis for specific missions will determine if this is months or perhaps years
- Estimated power requirements less than 100 W
 - Would not pose large burden on state-of-the-art satellite bus power systems
- Created a useful tool for predicting on-orbit EP performance
 - Can be modified for alternative EP model or orbit propagator
- AAIT could also help satellites de-orbit faster

Questions?