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Abstract. Helicon sources in an annular configuration have applications for plasma thrusters. The
theory of Klozenberget al. [J.P. Klozenberg B. McNamara and P.C. Thonemann, J. Fluid Mech.21
(1965) 545–563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a
cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in
the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous
linear system of equations must be solved to match the plasmaand inner and outer vacuum solutions.
The linear system can be ill-conditioned or even exactly singular, leading to a dispersion relation
with a discrete set of discontinuities. The coefficients forthe analytic solution are calculated by
solving the linear system with singular-value decomposition.
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BACKGROUND

Klozenberget al. [1] derived a wave equation with helicon and Trivelpiece-Gould
solutions from Faraday’s law

∇×E = iωB ,

pre-Maxwell Ampère’s law
∇×B = µ0J ,

and using the following form of Ohm’s law to express plasma currentJ in terms of wave
electric fieldE,

iωJ = ωωωce ×J−ω2
peε0E ,

whereω is a complex frequency whose small imaginary part is a collision frequency.
Solutions of the formf (r)exp[−i(ωt −mθ − kz)] are sought in cylindrical geometry.

The resulting wave equations is

ω∇× (∇×B)− kωce∇×B+
ωω2

pe

c2 B = 0

which can be written as

[(∇×)−β1][(∇×)−β2]B = 0,



where
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kωce

2ω
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 ,

with index 1 for the helicon mode and index 2 for the Trivelpiece-Gould (TG) mode.
The general solution is the sum of the solutions to

∇2B+β 2
1 B = 0 (1)

and
∇2B+β 2

2 B = 0, (2)

respectively.
For a cylindrical plasma with radiusb, one finds the solution for the axial component

Bz(r) = BJm(γ1r)+DJm(γ2r) , 0 < r < b ,

Bz(r) = ikFKm(kr) , r > b ,

whereγ2
1,2 = β 2

1,2− k2 andJm andKm are Bessel functions. The azimuthal and radial
components,Bθ andBr, respectively, can be expressed in terms ofBz by use of Eqs. (1)
and (2). By matching plasma and vacuum solutions atr = b, the three coefficientsB,
D andF can be eliminated. The condition that the global solution isunique leads to a
dispersion relation.

SOLUTION IN ANNULAR PLASMA

In an annular plasma, with vacuum forr < a, plasma fora < r < b, and vacuum for
r > b, the Klozenberg theory must be generalized. The general solution becomes

Bz(r) = ikAIm(kr) , r < a ,

Bz(r) = BJm(γ1r)+CYm(γ1r)+DJm(γ2r)+EYm(γ2r) , a < r < b ,

Bz(r) = ikFKm(kr) , r > b ,

As before, Eqs. (1) and (2) can be used to find expressions forBθ andBr. With two
plasma-vacuum interfaces and three magnetic-field components to match at each, we get
a total of six matching equations for the six coefficientsA, B, C, D, E andF. However,
the amplitude of the general solution can not be found from the matching conditions
and has to be imposed in some other way. We here choose to do this by settingA = −i.
One could then use five of the six matching conditions to determine the remaining five
coefficients.

Before finding the general solution, we will look at the pure helicon solution, where
the coefficientsD = E = 0. MatchingBz(r) at r = a andr = b, andBθ at r = a, some
calculation leads to

B = ikAIm(ka)

m
γ1a

β
k Ym(γ1a)+Y ′

m(γ1a)

Jm(γ1a)Y ′
m(γ1a)−Ym(γ1a)J′m(γ1a)

,



C = −ikAIm(ka)

m
γ1a

β
k Jm(γ1a)+ J′m(γ1a)

Jm(γ1a)Y ′
m(γ1a)−Ym(γ1a)J′m(γ1a)

and

kF = −i
BJm(γ1b)+CYm(γ1b)

Km(kb)
.

We also get the dispersion relation

Jm(γ1a)Y ′
m(γ1a) 6= Ym(γ1a)J′m(γ1a) ,

which tells us for which values of the axial wave numberk there is a unique solution.
This pure helicon solution is plotted in Fig. 1 using the parameters: m=1, a=5cm,

b=12cm, k=6.21/m,ω = 3.77·107s−1, ωce = 8.80·109s−1 andωpe = 7.98·1010s−1.
Returning now to the general case with both helicon and Trivelpiece-Gould (TG)

modes, we have five unknowns and six matching equations. We could choose five of
the matching equations, but the 5× 5 coefficient matrix will be singular for triplets
of (ω,m,k) where the dispersion relation has a discontinuity. Using singular-value
decomposition (SVD) not only allows us to handle singularities, but also lets us find the
solution to the overdetermined system consisting of all sixmatching equations. More
specifically, applying SVD to the system

Mx = y ,

whereM is the 6×5 coefficient matrix,x = (B,C,D,E,F) and
y = (ikAIm(ka), imAIm(ka)/a,kAI′m(ka),0,0,0), gives the least-squares fit ofx. The

FIGURE 1. Axial magnetic field of pure helicon solution in annular plasma



FIGURE 2. Axial magnetic field of solution with both helicon (long wavelength) and Trivelpiece-Gould
(short wavelength) modes in annular plasma

matrix elements ofM are given by

M1,1 = Jm(γ1a) ,

M2,1 = −γ−2
1 [mkJm(γ1a)/a+β1γ1J′m(γ1a)] ,

M3,1 = iγ−2
1 [mβ1Jm(γ1a)/a+ kγ1J′m(γ1a)] .

M4,1,M5,1,M6,1 are the same asM1,1,M2,1,M3,1, but with a → b. M1,2,M2,2,M3,2 are
the same asM1,1,M2,1,M3,1, but with Jm(γ1a) → Ym(γ1a) and J′m(γ1a) → Y ′

m(γ1a).
M4,2,M5,2,M6,2 are the same asM1,2,M2,2,M3,2, but with a → b. M1,3,M2,3,M3,3
are the same asM1,1,M2,1,M3,1, but with γ1 → γ2. M4,3,M5,3,M6,3 are the same as
M1,3,M2,3,M3,3, but with a → b. M1,4,M2,4,M3,4 are the same asM1,2,M2,2,M3,2,
but with γ1 → γ2. M4,4,M5,4,M6,4 are the same asM1,4,M2,4,M3,4, but with a → b.
M1,5 = M2,5 = M3,5 = 0 and

M4,5 = −ikKm(kb) ,

M5,5 = −imKm(kb)/b ,

M6,5 = −kK′
m(kb) .

The coefficients are then calculated asx = VΣΣΣ+UHy, where the SVD ofM = UΣΣΣVH ,
whereVH is the conjugate transpose ofV, ΣΣΣ is the diagonal matrix with the singular
values as elements andΣΣΣ+ is its pseudoinverse. Using the same parameters as above, we
get the solution shown in Fig. 2.
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