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Abstract. Helicon sources in an annular configuration have applinatfor plasma thrusters. The
theory of Klozenbergt al. [J.P. Klozenberg B. McNamara and P.C. Thonemann, J. Fluichivedl
(1965) 545-563] for the propagation and absorption of baliand Trivelpiece-Gould modes in a
cylindrical plasma has been generalized for annular plas#aalytic solutions are found also in
the annular case, but in the presence of both helicon andlpir&ce-Gould modes, a heterogeneous
linear system of equations must be solved to match the plasghaaner and outer vacuum solutions.
The linear system can be ill-conditioned or even exactlguiar, leading to a dispersion relation
with a discrete set of discontinuities. The coefficientstfar analytic solution are calculated by
solving the linear system with singular-value decompositi
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BACKGROUND

Klozenberget al. [1] derived a wave equation with helicon and Trivelpieceu(8o
solutions from Faraday'’s law
OxE=iwB,

pre-Maxwell Ampére’s law
Ox B = poJ,

and using the following form of Ohm’s law to express plasmaentJ in terms of wave
electric fieldE,
0] = Wee x J — WiEE,

wherew is a complex frequency whose small imaginary part is a ¢otisrequency.
Solutions of the forn¥ (r) exp—i(wt — m6 — kz)] are sought in cylindrical geometry.
The resulting wave equations is

2
ww
B =0
C

wl x (0 x B) — ke x B+

which can be written as

[(Ox) = Ba] [(Bx) — B2]B = O,



where

c?k2w2,

with index 1 for the helicon mode and index 2 for the Triveg@eGould (TG) mode.
The general solution is the sum of the solutions to

k w2 (w
o e {H\/M 2o ﬂ,

°B+B?B =0 1)

and
[°B+B2B =0, 2)

respectively.
For a cylindrical plasma with radius one finds the solution for the axial component

B,(r) = BJm(Var) + Ddm(yar), 0<r <b,

wherey?, = B, — k? and Jy, and Ky, are Bessel functions. The azimuthal and radial
componentsBg andB;, respectively, can be expressed in termBoby use of Eqgs. (1)
and (2). By matching plasma and vacuum solutions atb, the three coefficientB,

D andF can be eliminated. The condition that the global solutionngjue leads to a
dispersion relation.

SOLUTION IN ANNULAR PLASMA

In an annular plasma, with vacuum fox a, plasma fora < r < b, and vacuum for
r > b, the Klozenberg theory must be generalized. The genenatisolbecomes

B(r) = ikAlm(kr), r < a,
Bz(r) = BIm(yar) +CYm(yar) +DIm(yar) + EYm(yer), a<r < b,

As before, Egs. (1) and (2) can be used to find expressionBga@and B,. With two
plasma-vacuum interfaces and three magnetic-field conmpet@match at each, we get
a total of six matching equations for the six coefficieAt8, C, D, E andF. However,
the amplitude of the general solution can not be found froenrttatching conditions
and has to be imposed in some other way. We here choose tosdoyteettingA = —i.
One could then use five of the six matching conditions to detex the remaining five
coefficients.

Before finding the general solution, we will look at the pusditon solution, where
the coefficientd = E = 0. MatchingBy(r) atr = a andr = b, andBy atr = a, some
calculation leads to

B — ikAlm(ka) ik m(42) +Yi(112)
T In(i@) V(1) — Ym(yia)dhn(vaa) ’




o In(y12) + In(vaa)

C — _ikAl(ka
m(k) 3 AN 18) (118 Jn(23)
and
v — i BIm(vab) +C¥m(y1b)
- Ren(KD)

We also get the dispersion relation

In(v18)Ym(v18) # Ym(v1a)In(y1a),

which tells us for which values of the axial wave numkdere is a unique solution.

This pure helicon solution is plotted in Fig. 1 using the paeters: m=1, a=5cm,
b=12cm, k=6.21/m¢ = 3.77-10’s L, axe = 8.80- 10°s ! andwpe = 7.98- 1010571,

Returning now to the general case with both helicon and Tpigee-Gould (TG)
modes, we have five unknowns and six matching equations. \el choose five of
the matching equations, but thex% coefficient matrix will be singular for triplets
of (w,m k) where the dispersion relation has a discontinuity. Usingydiar-value
decomposition (SVD) not only allows us to handle singuiesitbut also lets us find the
solution to the overdetermined system consisting of allnsatching equations. More
specifically, applying SVD to the system

Mx =y,

whereM is the 6x 5 coefficient matrixx = (B,C,D,E,F) and
y = (ikAlm(ka),imAln(ka)/a, kAl (ka),0,0,0), gives the least-squares fit af The
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FIGURE 1. Axial magnetic field of pure helicon solution in annular pres
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FIGURE 2. Axial magnetic field of solution with both helicon (long wdgeagth) and Trivelpiece-Gould
(short wavelength) modes in annular plasma

matrix elements oM are given by
My1=Jm(y1a),
Mz 1= —y; 2[mkdm(via)/a+ Biyidin(vaa)],
M1 = iyy 2[MB1m(y1d) /a+ kyiJn(1a)] -
Ms.1,Ms51,Mg 1 are the same asl11,M21, M3, but witha — b. Mi12,M22,M3, are
the same asvl; 1,M21,M31, but with Jn(yia) — Ym(yra) and J,(y1a) — Ym(v1a).
Ms2,Ms52,Mg> are the same aly »,Mp 2, M3, but with a — b. My 3,Mp3,M33
are the same ably1,Mp1,M3 1, but with y3 — . Ma3,Ms3,Mg 3 are the same as
M13,M23,M33, but with a — b. M14,M24,M34 are the same a2, Mz 2, M3,
but with y3 — . M4 4,Ms54,Mg 4 are the same a1y 4,Mp 4,M3 4, but witha — b.
M175 = M275 = M375 =0and
Ma,5 = —ikKm(kb),
M575 = —Ime(kb)/b,
Me.s = —kK/(kb).
The coefficients are then calculatedxas VZTU"y, where the SVD oM = UZVH,
whereV" is the conjugate transpose ¥f X is the diagonal matrix with the singular

values as elements ald is its pseudoinverse. Using the same parameters as above, we
get the solution shown in Fig. 2.
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